Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB30C16D3_cF200_225_a_ej_2f_bc-001

This structure originally had the label AB30C16D3_cF200_225_a_ej_2f_bc. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/U8XN
or https://aflow.org/p/AB30C16D3_cF200_225_a_ej_2f_bc-001
or PDF Version

(NH$_{4}$)$_{3}$AlF$_{6}$ ($J2_{1}$) Structure: AB30C16D3_cF200_225_a_ej_2f_bc-001

Picture of Structure; Click for Big Picture
Prototype AlF$_{6}$H$_{12}$N$_{3}$
AFLOW prototype label AB30C16D3_cF200_225_a_ej_2f_bc-001
Strukturbericht designation $J2_{1}$
ICSD 412982
Pearson symbol cF200
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=AB30C16D3_cF200_225_a_ej_2f_bc-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

(NH$_{4}$)$_{3}$FeF$_{6}$,  (NH$_{4}$)$_{3}$TiOF$_{5}$,  (NH$_{4}$)$_{3}$Fe(NO$_{2}$)$_{6}$,  K$_{3}$Ir(NO$_{2}$)$_{6}$,  Cs$_{3}$Ir(NO$_{2}$)$_{6}$,  Rb$_{3}$Ir(NO$_{2}$)$_{6}$,  Tl$_{3}$Ir(NO$_{2}$)$_{6}$


  • Early determinations of this structure placed all of the fluorine atoms on the (24e) site and were not able to determine the positions of the hydrogen atoms in the ammonium ion. This structure was designated $H71$ ($H7_{1}$) by (Ewald, 1931), renamed $I2_{1}$ by (Hermann, 1937) and finally changed to $J2_{1}$ by (Gottfried, 1937).
  • The structure determined by (Udovenko, 2003) found that the fluorine atoms are split onto two sites:
  • F-I, at Wyckoff position (24e) is 1/3 filled, and
  • F-II, at (96j), is 1/6 filled.
  • The positions are so close that a reasonable approximation can be made by eliminating the (96j) site and fully occupying the (24e) site.
  • The H-I (32f) site is fully occupied, while the H-II (32f) site is 50% occupied.
  • Our original description of the structure (Hicks, 2021) incorrectly used a value of $1/2-x_{5}$ for the position of the H I atom. This rotated the NH$_{4}$ ions by 90° about the $z$-axis from their correct orientation. The currect CIF has the correct value for $x_{5}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) N I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) N II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) N II
$\mathbf{B_{5}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (24e) F I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (24e) F I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}$ (24e) F I
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}$ (24e) F I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{z}}$ (24e) F I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{z}}$ (24e) F I
$\mathbf{B_{11}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{14}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{15}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+3 x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{16}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{17}}$ = $- x_{5} \, \mathbf{a}_{1}+3 x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{18}}$ = $3 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) H I
$\mathbf{B_{19}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{20}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{22}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{23}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+3 x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{24}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{25}}$ = $- x_{6} \, \mathbf{a}_{1}+3 x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{26}}$ = $3 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{27}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{28}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{29}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{30}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{31}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{32}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{33}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{34}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{35}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{36}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{37}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{38}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{39}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{40}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{41}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{42}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{43}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{44}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{45}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{46}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (96j) F II
$\mathbf{B_{47}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{48}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{49}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}$ (96j) F II
$\mathbf{B_{50}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}$ (96j) F II

References

  • A. A. Udovenko, N. M. Laptash, and I. G. Maslennikova, Orientation disorder in ammonium elpasolites: Crystal structures of (NH$_{4}$)$_{3}$AlF$_{6}$, (NH$_{4}$)$_{3}$TiOF$_{5}$ and (NH$_{4}$)$_{3}$FeF$_{6}$, J. Fluor. Chem. 124, 5–15 (2003), doi:10.1016/S0022-1139(03)00166-0.
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913-1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi:10.1016/j.commatsci.2021.110450.

Prototype Generator

aflow --proto=AB30C16D3_cF200_225_a_ej_2f_bc --params=$a,x_{4},x_{5},x_{6},y_{7},z_{7}$

Species:

Running:

Output: