Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_cI36_199_b_c-001

This structure originally had the label AB2_cI36_199_b_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/VGMG
or https://aflow.org/p/AB2_cI36_199_b_c-001
or PDF Version

$C26_{a}$ (NO$_{2}$) (Obsolete) Structure: AB2_cI36_199_b_c-001

Picture of Structure; Click for Big Picture
Prototype NO$_{2}$
AFLOW prototype label AB2_cI36_199_b_c-001
Strukturbericht designation $C26_{a}$
ICSD 31175
Pearson symbol cI36
Space group number 199
Space group symbol $I2_13$
AFLOW prototype command aflow --proto=AB2_cI36_199_b_c-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • (Hermann, 1937) listed two possible structures for the low temperature solid cubic phase of NO$_{2}$, which were given Strukturbericht designations $C26_{a}$ and $C26_{b}$, the only structures with Roman subscripts in the original series.
  • $C26_{a}$ (AB2_cI36_199_b_c) was set in space group $I2_{1}3$ #199. Hermann noted that this structure has a very short distance (1.88Å) between oxygen atoms on different NO$_{2}$ molecules, and that this structure does not form the (NO$_{2}$)$_{2}$ aggregate molecule found in the $C26_{b}$ structure, making making this proposed structure very unlikely.
  • Recognizing this, (Hendricks, 1931) suggested that NO$_{2}$ was actually in space group $I23$ #197. (Hermann, 1997) gave this structure the $C26_{b}$ designation, but noted that based on Hendricks's atomic positions the space group was actually $Im\overline{3}$ #204.
  • The modern accepted structure for NO$_{2}$, AB2_cI36_204_d_g, is set in space group $Im\overline{3}$, confirming Hendricks.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12b) N I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12b) N I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ (12b) N I
$\mathbf{B_{4}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12b) N I
$\mathbf{B_{5}}$ = $\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (12b) N I
$\mathbf{B_{6}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (12b) N I
$\mathbf{B_{7}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{8}}$ = $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{9}}$ = $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{10}}$ = $- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{11}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{12}}$ = $- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{13}}$ = $\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{14}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{15}}$ = $\left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{16}}$ = $- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{17}}$ = $- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24c) O I
$\mathbf{B_{18}}$ = $\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (24c) O I

References

  • L. Vegard, Die Struktur von festem N$_{2}$O$_{4}$ bei der Temperatur von flüssiger Luft, Z. Physik 68, 184–203 (1931), doi:10.1007/BF01390966.
  • P. Villars and K. Cenzual, eds., Crystal Structure Data of Inorganic Compounds, vol. III (Springer-Verlag, Berlin, Heidelberg, 2005).
  • S. B. Hendricks, Die Kristallstruktur von N$_{2}$O$_{4}$, Z. Physik 70, 699–700 (1931), doi:10.1007/BF01340758.

Found in

  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Prototype Generator

aflow --proto=AB2_cI36_199_b_c --params=$a,x_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: