Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_cF48_227_c_e-001

This structure originally had the label AB2_cF48_227_c_e. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/PR5K
or https://aflow.org/p/AB2_cF48_227_c_e-001
or PDF Version

Ti$_{2}$C Structure: AB2_cF48_227_c_e-001

Picture of Structure; Click for Big Picture
Prototype CTi$_{2}$
AFLOW prototype label AB2_cF48_227_c_e-001
ICSD 77473
Pearson symbol cF48
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=AB2_cF48_227_c_e-001
--params=$a, \allowbreak x_{2}$

Other compounds with this structure

Ca$_{33}$Ge,  TiS$_{2}$


  • Some sources consider the real prototype of this system to be Ca$_{33}$Ge, with the (32e) sites occupied by calcium atoms and the (16c) sites randomly occupied by calcium and germanium atoms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (16c) C I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (16c) C I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) C I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) C I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(3 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}- \left(3 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{8}}$ = $- \left(3 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(3 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{11}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(3 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Ti I
$\mathbf{B_{12}}$ = $\left(3 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Ti I

References

  • H. Goretzei, Neutron Diffraction Studies on Titanium-Carbon and Zirconium-Carbon Alloys, Phys. Stat. Solidi B 20, K141–K143 (1967), doi:10.1002/pssb.19670200260.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=AB2_cF48_227_c_e --params=$a,x_{2}$

Species:

Running:

Output: