Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB27CD3_cP32_221_a_dij_b_c-001

This structure originally had the label AB27CD3_cP32_221_a_dij_b_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/3F7M
or https://aflow.org/p/AB27CD3_cP32_221_a_dij_b_c-001
or PDF Version

Model of Austenite Structure (cP32): AB27CD3_cP32_221_a_dij_b_c-001

Picture of Structure; Click for Big Picture
Prototype CrFe$_{27}$MoNi$_{3}$
AFLOW prototype label AB27CD3_cP32_221_a_dij_b_c-001
ICSD none
Pearson symbol cP32
Space group number 221
Space group symbol $Pm\overline{3}m$
AFLOW prototype command aflow --proto=AB27CD3_cP32_221_a_dij_b_c-001
--params=$a, \allowbreak y_{5}, \allowbreak y_{6}$

  • Austenitic steels are alloys of iron and other metals with an averaged face-centered cubic structure. This model represents one approximation for an austenite steel. It is not meant to represent a real steel, and the selection of atom types for each Wyckoff position is arbitrary. When $y_{5}=y_{6}=1/4$ all the atoms are on sites of a bcc lattice.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Cr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (1b) Mo I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Ni I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Ni I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (3c) Ni I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (3d) Fe I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (3d) Fe I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (3d) Fe I
$\mathbf{B_{9}}$ = $y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{10}}$ = $- y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{11}}$ = $y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{12}}$ = $- y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{13}}$ = $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{14}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{15}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{16}}$ = $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Fe II
$\mathbf{B_{17}}$ = $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (12i) Fe II
$\mathbf{B_{18}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (12i) Fe II
$\mathbf{B_{19}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (12i) Fe II
$\mathbf{B_{20}}$ = $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (12i) Fe II
$\mathbf{B_{21}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{23}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{24}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{25}}$ = $y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{26}}$ = $y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{27}}$ = $- y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{28}}$ = $- y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{29}}$ = $y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{30}}$ = $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{31}}$ = $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Fe III
$\mathbf{B_{32}}$ = $- y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Fe III

References

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW library of crystallographic prototypes: part 1, Comput. Mater. Sci. 136, S1–S828 (2017), doi:10.1016/j.commatsci.2017.01.017.

Prototype Generator

aflow --proto=AB27CD3_cP32_221_a_dij_b_c --params=$a,y_{5},y_{6}$

Species:

Running:

Output: