Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB18C8_cF108_225_a_eh_f-001

This structure originally had the label AB18C8_cF108_225_a_eh_f. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/VR5Q
or https://aflow.org/p/AB18C8_cF108_225_a_eh_f-001
or PDF Version

Model of Austenite Structure (cF108): AB18C8_cF108_225_a_eh_f-001

Picture of Structure; Click for Big Picture
Prototype CrFe$_{18}$MoNi$_{8}$
AFLOW prototype label AB18C8_cF108_225_a_eh_f-001
ICSD none
Pearson symbol cF108
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=AB18C8_cF108_225_a_eh_f-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{4}$

  • Austenitic steels are alloys of iron and other metals with an averaged face-centered cubic structure. This model represents one approximation for an austenite steel.
  • If we set $x_{2} = 1/3$, $x_{3} = 2/3$, and $y_{4} = 2/3$, the atoms are on the sites of an fcc lattice with lattice constant $a_{fcc} = a/3$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cr I
$\mathbf{B_{2}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}$ (24e) Fe I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (24e) Fe I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{y}}$ (24e) Fe I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (24e) Fe I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{z}}$ (24e) Fe I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{z}}$ (24e) Fe I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{11}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+3 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{14}}$ = $- x_{3} \, \mathbf{a}_{1}+3 x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{15}}$ = $3 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Ni I
$\mathbf{B_{16}}$ = $2 y_{4} \, \mathbf{a}_{1}$ = $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{17}}$ = $2 y_{4} \, \mathbf{a}_{2}- 2 y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{18}}$ = $- 2 y_{4} \, \mathbf{a}_{2}+2 y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{19}}$ = $- 2 y_{4} \, \mathbf{a}_{1}$ = $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{20}}$ = $2 y_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{21}}$ = $- 2 y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{22}}$ = $2 y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{23}}$ = $- 2 y_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (48h) Fe II
$\mathbf{B_{24}}$ = $2 y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (48h) Fe II
$\mathbf{B_{25}}$ = $2 y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (48h) Fe II
$\mathbf{B_{26}}$ = $- 2 y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (48h) Fe II
$\mathbf{B_{27}}$ = $- 2 y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (48h) Fe II

References

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW library of crystallographic prototypes: part 1, Comput. Mater. Sci. 136, S1–S828 (2017), doi:10.1016/j.commatsci.2017.01.017.

Prototype Generator

aflow --proto=AB18C8_cF108_225_a_eh_f --params=$a,x_{2},x_{3},y_{4}$

Species:

Running:

Output: