Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB13_cF112_226_a_bi-001

This structure originally had the label AB13_cF112_226_a_bi. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/DCLX
or https://aflow.org/p/AB13_cF112_226_a_bi-001
or PDF Version

NaZn$_{13}$ ($D2_{3}$) Structure: AB13_cF112_226_a_bi-001

Picture of Structure; Click for Big Picture
Prototype NaZn$_{13}$
AFLOW prototype label AB13_cF112_226_a_bi-001
Strukturbericht designation $D2_{3}$
ICSD 105173
Pearson symbol cF112
Space group number 226
Space group symbol $Fm\overline{3}c$
AFLOW prototype command aflow --proto=AB13_cF112_226_a_bi-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

AmBe$_{13}$,  BaCu$_{13}$,  BaZn$_{13}$,  CaBe$_{13}$,  CaZn$_{13}$,  CdZn$_{13}$,  CeBe$_{13}$,  CsCd$_{13}$,  DyBe$_{13}$,  ErBe$_{13}$,  EuBe$_{13}$,  HfBe$_{13}$,  KCd$_{13}$,  KZn$_{13}$,  LaBe$_{13}$,  LuBe$_{13}$,  MgBe$_{13}$,  NbBe$_{13}$,  NdBe$_{13}$,  PtBe$_{13}$,  PuBe$_{13}$,  RbCd$_{13}$,  ScBe$_{13}$,  SmBe$_{13}$,  SrBe$_{13}$,  SrZn$_{13}$,  TbBe$_{13}$,  ThBe$_{13}$,  TmBe$_{13}$,  UBe$_{13}$,  VBe$_{13}$,  YBe$_{13}$,  YbBe$_{13}$,  ZrBe$_{13}$,  CeNi$_{8.5}$Si$_{4.5}$,  LaFe$_{13-x-y}$Co$_{y}$Al$_{x}$,  LaFe$_{13-x-y}$Co$_{y}$Si$_{x}$,  NdFe$_{13-x-y}$Co$_{y}$Si$_{x}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8a) Na I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8a) Na I
$\mathbf{B_{3}}$ = $0$ = $0$ (8b) Zn I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (8b) Zn I
$\mathbf{B_{5}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{6}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{7}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{8}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{9}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{10}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{11}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{12}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{13}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (96i) Zn II
$\mathbf{B_{14}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (96i) Zn II
$\mathbf{B_{15}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (96i) Zn II
$\mathbf{B_{16}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (96i) Zn II
$\mathbf{B_{17}}$ = $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{18}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{19}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{20}}$ = $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{21}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{22}}$ = $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{23}}$ = $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{24}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{25}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{26}}$ = $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{27}}$ = $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96i) Zn II
$\mathbf{B_{28}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96i) Zn II

References

  • D. P. Shoemaker, R. E. Marsh, F. J. Ewing, and L. Pauling, Interatomic distances and atomic valences in NaZn$_{13}$, Acta Cryst. 5, 637–644 (1952), doi:10.1107/S0365110X52001763.

Prototype Generator

aflow --proto=AB13_cF112_226_a_bi --params=$a,y_{3},z_{3}$

Species:

Running:

Output: