AFLOW Prototype: AB13_cF112_226_a_bi-001
This structure originally had the label AB13_cF112_226_a_bi. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/DCLX
or
https://aflow.org/p/AB13_cF112_226_a_bi-001
or
PDF Version
Prototype | NaZn$_{13}$ |
AFLOW prototype label | AB13_cF112_226_a_bi-001 |
Strukturbericht designation | $D2_{3}$ |
ICSD | 105173 |
Pearson symbol | cF112 |
Space group number | 226 |
Space group symbol | $Fm\overline{3}c$ |
AFLOW prototype command |
aflow --proto=AB13_cF112_226_a_bi-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$ |
AmBe$_{13}$, BaCu$_{13}$, BaZn$_{13}$, CaBe$_{13}$, CaZn$_{13}$, CdZn$_{13}$, CeBe$_{13}$, CsCd$_{13}$, DyBe$_{13}$, ErBe$_{13}$, EuBe$_{13}$, HfBe$_{13}$, KCd$_{13}$, KZn$_{13}$, LaBe$_{13}$, LuBe$_{13}$, MgBe$_{13}$, NbBe$_{13}$, NdBe$_{13}$, PtBe$_{13}$, PuBe$_{13}$, RbCd$_{13}$, ScBe$_{13}$, SmBe$_{13}$, SrBe$_{13}$, SrZn$_{13}$, TbBe$_{13}$, ThBe$_{13}$, TmBe$_{13}$, UBe$_{13}$, VBe$_{13}$, YBe$_{13}$, YbBe$_{13}$, ZrBe$_{13}$, CeNi$_{8.5}$Si$_{4.5}$, LaFe$_{13-x-y}$Co$_{y}$Al$_{x}$, LaFe$_{13-x-y}$Co$_{y}$Si$_{x}$, NdFe$_{13-x-y}$Co$_{y}$Si$_{x}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8a) | Na I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8a) | Na I |
$\mathbf{B_{3}}$ | = | $0$ | = | $0$ | (8b) | Zn I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (8b) | Zn I |
$\mathbf{B_{5}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{6}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{7}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{8}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{9}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{10}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{11}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{12}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{13}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (96i) | Zn II |
$\mathbf{B_{14}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (96i) | Zn II |
$\mathbf{B_{15}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (96i) | Zn II |
$\mathbf{B_{16}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (96i) | Zn II |
$\mathbf{B_{17}}$ | = | $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{18}}$ | = | $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{19}}$ | = | $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{20}}$ | = | $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{21}}$ | = | $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{22}}$ | = | $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{23}}$ | = | $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{24}}$ | = | $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{25}}$ | = | $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{26}}$ | = | $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{27}}$ | = | $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (96i) | Zn II |
$\mathbf{B_{28}}$ | = | $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (96i) | Zn II |