Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB12C_cF56_202_a_h_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/G65V
or https://aflow.org/p/AB12C_cF56_202_a_h_b-001
or PDF Version

α-CuZrF$_{6}$ Structure: AB12C_cF56_202_a_h_b-001

Picture of Structure; Click for Big Picture
Prototype CuF$_{6}$Zr
AFLOW prototype label AB12C_cF56_202_a_h_b-001
ICSD 30115
Pearson symbol cF56
Space group number 202
Space group symbol $Fm\overline{3}$
AFLOW prototype command aflow --proto=AB12C_cF56_202_a_h_b-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$

  • CuZrF$_{6}$ exists in four forms, depending on the temperature. Structures below 500K show evidence of a Jahn-Teller distortion.
    • $\alpha'$–CuZrF$_{6}$ is the high temperature cubic form. Evidence from (Propach, 1978) shows this to be stable above $≈ 450$K. We use the lattice constant at 500K.
    • $\alpha$–CuZrF$_{6}$ (this structure) is stable above 383K. The fluorine (6f) sites are doubled, with only one of each pair occupied. We use data taken at 393K.
    • $\beta$–CuZrF$_{6}$ is stable between 353 and 383K. In this case the Jahn-Teller distortion is locked in, so there are only six fluorine sites, all fully occupied.
    • $\gamma$–CuZrF$_{6}$ is stable below 353K. Again each fluorine site is only half-filled.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Zr I
$\mathbf{B_{3}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{4}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{5}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{6}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{7}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{8}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{9}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{10}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (48h) F I
$\mathbf{B_{11}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (48h) F I
$\mathbf{B_{12}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (48h) F I
$\mathbf{B_{13}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (48h) F I
$\mathbf{B_{14}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (48h) F I

References

  • V. Propach and F. Steffens, Über die Strukturen der CuZrF$_{6}$-Modifikationen - Neutronenbeugungsuntersuchungen an den Kristallpulvern, Z. Krystallogr. 33, 268–274 (1978), doi:10.1515/znb-1978-0304.

Prototype Generator

aflow --proto=AB12C_cF56_202_a_h_b --params=$a,y_{3},z_{3}$

Species:

Running:

Output: