Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB11_cP36_221_c_agij-001

This structure originally had the label AB11_cP36_221_c_agij. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/2EDD
or https://aflow.org/p/AB11_cP36_221_c_agij-001
or PDF Version

BaHg$_{11}$ ($D2_{e}$) Structure: AB11_cP36_221_c_agij-001

Picture of Structure; Click for Big Picture
Prototype BaHg$_{11}$
AFLOW prototype label AB11_cP36_221_c_agij-001
Strukturbericht designation $D2_{e}$
ICSD 58656
Pearson symbol cP36
Space group number 221
Space group symbol $Pm\overline{3}m$
AFLOW prototype command aflow --proto=AB11_cP36_221_c_agij-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak y_{5}$

Other compounds with this structure

CeCd$_{11}$,  KHg$_{11}$,  LaCd$_{11}$,  NdCd$_{11}$,  PrCd$_{11}$,  PuCd$_{11}$,  RbHg$_{11}$,  SmCd$_{11}$,  SrHg$_{11}$,  Eu(Ag$_{x}$Au$_{11-x}$)


  • (Pearson, 1972) state that this structure occurs in a number of Hg and Cd phases with Group I or IIA metals or rare earths. We lists those which we have found in the literature.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Hg I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Ba I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Ba I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (3c) Ba I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8g) Hg II
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{14}}$ = $- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{15}}$ = $y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{17}}$ = $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{18}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{19}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{20}}$ = $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (12i) Hg III
$\mathbf{B_{21}}$ = $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (12i) Hg III
$\mathbf{B_{22}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (12i) Hg III
$\mathbf{B_{23}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (12i) Hg III
$\mathbf{B_{24}}$ = $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (12i) Hg III
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{29}}$ = $y_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{30}}$ = $y_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{31}}$ = $- y_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{32}}$ = $- y_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{33}}$ = $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{34}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{35}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Hg IV
$\mathbf{B_{36}}$ = $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Hg IV

References

  • G. Peyronel, Struttura della fase BaHg$_{11}$, Gazz. Chim. Ital. 82, 679–690 (1952).

Found in

  • P. Villars, Material Phases Data System (MPDS) (SpringerMaterials, CH-6354 Vitznau, Switzerland, 2014).
  • W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley Interscience, New York, London, Sydney, Tornoto, 1972).

Prototype Generator

aflow --proto=AB11_cP36_221_c_agij --params=$a,x_{3},y_{4},y_{5}$

Species:

Running:

Output: