Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A9B8_cF68_225_af_ce-001

This structure originally had the label A9B8_cF68_225_af_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/X1EM
or https://aflow.org/p/A9B8_cF68_225_af_ce-001
or PDF Version

Co$_{9}$S$_{8}$ ($D8_{9}$) Structure: A9B8_cF68_225_af_ce-001

Picture of Structure; Click for Big Picture
Prototype Co$_{9}$S$_{8}$
AFLOW prototype label A9B8_cF68_225_af_ce-001
Strukturbericht designation $D8_{9}$
ICSD 23929
Pearson symbol cF68
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A9B8_cF68_225_af_ce-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

(Fe,  Ni)$_{9}$S$_{8}$ (pentlandite),  Co$_{9}$Se$_{8}$,  Co$_{8}$FeS$_{8}$,  Co$_{8}$NiS$_{8}$,  Co$_{8}$PdS$_{8}$,  Co$_{8}$RhS$_{8}$,  Co$_{8}$RuS$_{8}$,  Fe$_{4}$Ni$_{4}$PdS$_{8}$,  Fe$_{4}$Ni$_{4}$RhS$_{8}$,  Fe$_{4}$Ni$_{4}$RuS$_{8}$


  • (Geller,1962) placed the first Co atom at the (4b) Wyckoff position. We have shifted this to the origin, the (4a) Wyckoff position.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Co I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}$ (24e) S II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (24e) S II
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{y}}$ (24e) S II
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{y}}$ (24e) S II
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{z}}$ (24e) S II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{z}}$ (24e) S II
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{13}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+3 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}+3 x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II
$\mathbf{B_{17}}$ = $3 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Co II

References


Prototype Generator

aflow --proto=A9B8_cF68_225_af_ce --params=$a,x_{3},x_{4}$

Species:

Running:

Output: