AFLOW Prototype: A9B8_cF68_225_af_ce-001
This structure originally had the label A9B8_cF68_225_af_ce. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/X1EM
or
https://aflow.org/p/A9B8_cF68_225_af_ce-001
or
PDF Version
Prototype | Co$_{9}$S$_{8}$ |
AFLOW prototype label | A9B8_cF68_225_af_ce-001 |
Strukturbericht designation | $D8_{9}$ |
ICSD | 23929 |
Pearson symbol | cF68 |
Space group number | 225 |
Space group symbol | $Fm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A9B8_cF68_225_af_ce-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}$ |
(Fe, Ni)$_{9}$S$_{8}$ (pentlandite), Co$_{9}$Se$_{8}$, Co$_{8}$FeS$_{8}$, Co$_{8}$NiS$_{8}$, Co$_{8}$PdS$_{8}$, Co$_{8}$RhS$_{8}$, Co$_{8}$RuS$_{8}$, Fe$_{4}$Ni$_{4}$PdS$_{8}$, Fe$_{4}$Ni$_{4}$RhS$_{8}$, Fe$_{4}$Ni$_{4}$RuS$_{8}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Co I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | S I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8c) | S I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (24e) | S II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (24e) | S II |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{y}}$ | (24e) | S II |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{y}}$ | (24e) | S II |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{z}}$ | (24e) | S II |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{z}}$ | (24e) | S II |
$\mathbf{B_{10}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{11}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{13}}$ | = | $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{14}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+3 x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{16}}$ | = | $- x_{4} \, \mathbf{a}_{1}+3 x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |
$\mathbf{B_{17}}$ | = | $3 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (32f) | Co II |