Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7BC4_cP96_218_bcefi_ad_ei-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/HJWV
or https://aflow.org/p/A7BC4_cP96_218_bcefi_ad_ei-001
or PDF Version

Li$_{7}$MnN$_{4}$ Structure: A7BC4_cP96_218_bcefi_ad_ei-001

Picture of Structure; Click for Big Picture
Prototype Li$_{7}$MnN$_{4}$
AFLOW prototype label A7BC4_cP96_218_bcefi_ad_ei-001
ICSD 154076
Pearson symbol cP96
Space group number 218
Space group symbol $P\overline{4}3n$
AFLOW prototype command aflow --proto=A7BC4_cP96_218_bcefi_ad_ei-001
--params=$a, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}$

Other compounds with this structure

Li$_{7}$PN$_{4}$,  Li$_{7}$VN$_{4}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Mn I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) Mn I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Li I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Li I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Li I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Li I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6b) Li I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Li I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6c) Li II
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6c) Li II
$\mathbf{B_{11}}$ = $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Li II
$\mathbf{B_{12}}$ = $\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Li II
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) Li II
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) Li II
$\mathbf{B_{15}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6d) Mn II
$\mathbf{B_{16}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6d) Mn II
$\mathbf{B_{17}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6d) Mn II
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6d) Mn II
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6d) Mn II
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6d) Mn II
$\mathbf{B_{21}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{22}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{23}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{24}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{25}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{26}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{27}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{28}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Li III
$\mathbf{B_{29}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{30}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{31}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{32}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{33}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{34}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{35}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{36}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) N I
$\mathbf{B_{37}}$ = $x_{7} \, \mathbf{a}_{1}$ = $a x_{7} \,\mathbf{\hat{x}}$ (12f) Li IV
$\mathbf{B_{38}}$ = $- x_{7} \, \mathbf{a}_{1}$ = $- a x_{7} \,\mathbf{\hat{x}}$ (12f) Li IV
$\mathbf{B_{39}}$ = $x_{7} \, \mathbf{a}_{2}$ = $a x_{7} \,\mathbf{\hat{y}}$ (12f) Li IV
$\mathbf{B_{40}}$ = $- x_{7} \, \mathbf{a}_{2}$ = $- a x_{7} \,\mathbf{\hat{y}}$ (12f) Li IV
$\mathbf{B_{41}}$ = $x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{42}}$ = $- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{43}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{44}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{45}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{46}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{47}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{48}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12f) Li IV
$\mathbf{B_{49}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{50}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{51}}$ = $- x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{52}}$ = $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{53}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{54}}$ = $z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{55}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{56}}$ = $- z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{57}}$ = $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{58}}$ = $- y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{59}}$ = $y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{60}}$ = $- y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{61}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{62}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{63}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{64}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{65}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{66}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{67}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{68}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{69}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{70}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{71}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{72}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Li V
$\mathbf{B_{73}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{74}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{75}}$ = $- x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{76}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{77}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{78}}$ = $z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{79}}$ = $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{80}}$ = $- z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{81}}$ = $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{82}}$ = $- y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{83}}$ = $y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{84}}$ = $- y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{85}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{86}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{87}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{88}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{89}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{90}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{91}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{92}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{93}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{94}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{95}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II
$\mathbf{B_{96}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) N II

References

  • J. Cabana, N. Duprë, G. Rousse, C. P. Grey, and M. R. PalacĂ­n, Ex situ NMR and neutron diffraction study of structure and lithium motion in Li$_{7}$MnN$_{4}$, Solid State Ion. 176, 2205–2218 (2005), doi:10.1016/j.ssi.2005.07.001.

Found in

  • K. Kushida, Y. Ichihashi, Y. Suzuki, and K. Kuriyama, Electronic structural difference between Li$_{7}$VN$_{4}$ and Li$_{7}$MnN$_{4}$ due to the replacement of V with Mn: A simulation by a discrete variational X$\alpha$ method, Physica B 405, 2305–2310 (2010), doi:10.1016/j.physb.2010.02.033.

Prototype Generator

aflow --proto=A7BC4_cP96_218_bcefi_ad_ei --params=$a,x_{5},x_{6},x_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9}$

Species:

Running:

Output: