Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7BC3D13_cF192_219_ce_a_d_bh-001

This structure originally had the label A7BC3D13_cF192_219_de_b_c_ah. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/0WNV
or https://aflow.org/p/A7BC3D13_cF192_219_ce_a_d_bh-001
or PDF Version

Boracite (Mg$_{3}$B$_{7}$ClO$_{13}$) Structure: A7BC3D13_cF192_219_ce_a_d_bh-001

Picture of Structure; Click for Big Picture
Prototype B$_{7}$ClMg$_{3}$O$_{13}$
AFLOW prototype label A7BC3D13_cF192_219_ce_a_d_bh-001
Mineral name boracite
ICSD 22009
Pearson symbol cF192
Space group number 219
Space group symbol $F\overline{4}3c$
AFLOW prototype command aflow --proto=A7BC3D13_cF192_219_ce_a_d_bh-001
--params=$a, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$

Other compounds with this structure

Cr$_{3}$B$_{7}$BrO$_{13}$,  Cr$_{3}$B$_{7}$ClO$_{13}$,  Cr$_{3}$B$_{7}$IO$_{13}$,  Fe$_{3}$B$_{7}$BrO$_{13}$,  Fe$_{3}$B$_{7}$ClO$_{13}$,  Fe$_{3}$B$_{7}$IO$_{13}$,  Mg$_{3}$B$_{7}$BrO$_{13}$,  Mg$_{3}$B$_{7}$ClO$_{13}$,  Mg$_{3}$B$_{7}$IO$_{13}$,  Mn$_{3}$B$_{7}$BrO$_{13}$,  Mn$_{3}$B$_{7}$ClO$_{13}$,  Mn$_{3}$B$_{7}$IO$_{13}$


  • Experimental data was obtained at 400$^\circ$C.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (8a) Cl I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (8a) Cl I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) B I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) B I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) B I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) B I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (24c) B I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24c) B I
$\mathbf{B_{11}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Mg I
$\mathbf{B_{12}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Mg I
$\mathbf{B_{13}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Mg I
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Mg I
$\mathbf{B_{15}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Mg I
$\mathbf{B_{16}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24d) Mg I
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{18}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{19}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{20}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{21}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{22}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(3 x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{23}}$ = $- \left(3 x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{24}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(3 x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32e) B II
$\mathbf{B_{25}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{26}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{27}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{28}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{29}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{30}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{31}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{32}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{33}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{34}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{35}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{36}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{37}}$ = $\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{38}}$ = $\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{39}}$ = $- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{40}}$ = $\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{41}}$ = $\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{42}}$ = $\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{43}}$ = $\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{44}}$ = $- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{45}}$ = $\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{46}}$ = $- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{47}}$ = $\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{48}}$ = $\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) O II

References

  • S. Sueno, J. R. Clark, J. J. Papike, and J. A. Konnert, Crystal-Structure Refinement of Cubic Boracite, Am. Mineral. 58, 691–697 (1973).

Prototype Generator

aflow --proto=A7BC3D13_cF192_219_ce_a_d_bh --params=$a,x_{5},x_{6},y_{6},z_{6}$

Species:

Running:

Output: