Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B3_cI40_229_df_e-001

This structure originally had the label A7B3_cI40_229_df_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/9SK5
or https://aflow.org/p/A7B3_cI40_229_df_e-001
or PDF Version

Ir$_{3}$Ge$_{7}$ ($D8_{f}$) Structure: A7B3_cI40_229_df_e-001

Picture of Structure; Click for Big Picture
Prototype Ge$_{7}$Ir$_{3}$
AFLOW prototype label A7B3_cI40_229_df_e-001
Strukturbericht designation $D8_{f}$
ICSD 408313
Pearson symbol cI40
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=A7B3_cI40_229_df_e-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}$

Other compounds with this structure

As$_{7}$Re$_{3}$,  Ga$_{7}$Ni$_{3}$,  Ga$_{7}$Pd$_{3}$,  Ga$_{7}$Pt$_{3}$,  In$_{7}$Pd$_{3}$,  In$_{7}$Pt$_{3}$,  Sb$_{7}$Mo$_{3}$,  Sn$_{7}$Ir$_{3}$,  Sn$_{7}$Os$_{3}$,  Sn$_{7}$Ru$_{3}$


  • Although (Haussermann, 1998) list the prototype for this structure as Ir$_{3}$Ge$_{7}$, that structure is not listed in the ICSD. We link to the similar Ni$_{3}$Ga$_{7}$ structure.
  • The ICSD gives the prototype for this structure as Ru$_{3}$Sn$_{7}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (12d) Ge I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (12d) Ge I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}$ (12e) Ir I
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (12e) Ir I
$\mathbf{B_{9}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{y}}$ (12e) Ir I
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (12e) Ir I
$\mathbf{B_{11}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{z}}$ (12e) Ir I
$\mathbf{B_{12}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{z}}$ (12e) Ir I
$\mathbf{B_{13}}$ = $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{14}}$ = $- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{15}}$ = $- 2 x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{16}}$ = $- 2 x_{3} \, \mathbf{a}_{1}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{17}}$ = $2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{18}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{19}}$ = $2 x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II
$\mathbf{B_{20}}$ = $2 x_{3} \, \mathbf{a}_{1}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Ge II

References

Found in

  • F. Selim, J. P. Bevington, and G. S. Collins, Diffusion of $^{111}$Cd probes in Ga$_{7}$Pt$_{3}$ studied via nuclear quadrupole relaxation, Hyperf. Int. 178, 87–90 (2007), doi:10.1007/s10751-008-9663-3.

Prototype Generator

aflow --proto=A7B3_cI40_229_df_e --params=$a,x_{2},x_{3}$

Species:

Running:

Output: