Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B12C19_cI152_220_ac_2d_bce-001

This structure originally had the label A7B12C19_cI152_220_bc_2d_ace. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/L8NP
or https://aflow.org/p/A7B12C19_cI152_220_ac_2d_bce-001
or PDF Version

Mayenite (12 CaO$\cdot$7Al$_{2}$O$_{3}$, $K7_4$, C12A7) Structure: A7B12C19_cI152_220_ac_2d_bce-001

Picture of Structure; Click for Big Picture
Prototype Al$_{14}$Ca$_{12}$O$_{33}$
AFLOW prototype label A7B12C19_cI152_220_ac_2d_bce-001
Strukturbericht designation $K7_{4}$
Mineral name mayenite
ICSD 24100
Pearson symbol cI152
Space group number 220
Space group symbol $I\overline{4}3d$
AFLOW prototype command aflow --proto=A7B12C19_cI152_220_ac_2d_bce-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

  • We present the structure determined by (Boysen, 2007) with data taken at 293K. This slightly differs from the original determination of (Büssem, 1936), which was given the $K7_{4}$ designation by (Gottfried, 1938). In the original work, the calcium atoms were thought to be located at a single (24d) site. Newer findings show that calcium is split between two (24d) sites, with the site we have labeled Ca-I having 87.5% of the atoms and Ca-II the remainder, although presumably only one of the two sites is occupied in any pair.
  • All studies show that the O-I (12a) site is only partially occupied: if this is occupied 1/6 of the time we get the proper stoichiometry, though (Boysen, 2007) found the occupation was 0.251 at 293K, dropping as the temperature decreased.
  • This structure is often referred to in the literature as C12A7 to distinguish it from other CaO/Al$_{2}$O$_{3}$ compounds.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12a) Al I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12a) Al I
$\mathbf{B_{3}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}$ (12a) Al I
$\mathbf{B_{4}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}$ (12a) Al I
$\mathbf{B_{5}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12a) Al I
$\mathbf{B_{6}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12a) Al I
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{9}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{10}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{11}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{12}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{13}}$ = $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{15}}$ = $- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{16}}$ = $- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{17}}$ = $\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{19}}$ = $- 2 x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{20}}$ = $- 2 x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al II
$\mathbf{B_{21}}$ = $2 x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{23}}$ = $- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{24}}$ = $- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{25}}$ = $\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{27}}$ = $- 2 x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{28}}$ = $- 2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) O II
$\mathbf{B_{29}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{30}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{31}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (24d) Ca I
$\mathbf{B_{32}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{33}}$ = $\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{34}}$ = $- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{35}}$ = $\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{36}}$ = $- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{37}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{38}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{39}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{40}}$ = $- x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24d) Ca I
$\mathbf{B_{41}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{42}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{43}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}$ (24d) Ca II
$\mathbf{B_{44}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{45}}$ = $\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{46}}$ = $- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{47}}$ = $\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{48}}$ = $- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{49}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{50}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{51}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{52}}$ = $- x_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24d) Ca II
$\mathbf{B_{53}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{54}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{55}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{56}}$ = $- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{57}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{58}}$ = $- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{59}}$ = $\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{60}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{61}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{62}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{63}}$ = $- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{64}}$ = $\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{65}}$ = $\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{66}}$ = $\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{67}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{68}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{69}}$ = $\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{70}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{71}}$ = $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{72}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{73}}$ = $\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{74}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{75}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{76}}$ = $\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III

References

  • H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, Structure and oxygen mobility in mayenite (Ca$_{12}$Al$_{14}$O$_{33}$): a high-temperature neutron powder diffraction study, Acta Crystallogr. Sect. B 63, 675–682 (2007), doi:10.1107/S0108768107030005.
  • W. Büssem and A. Eitel, Die Struktur des Pentacalciumtrialuminats, Zeitschrift für Kristallographie 95, 175–188 (1936).
  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A7B12C19_cI152_220_ac_2d_bce --params=$a,x_{3},x_{4},x_{5},x_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: