Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B16C_cI46_229_e_ch_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/Y3T5
or https://aflow.org/p/A6B16C_cI46_229_e_ch_a-001
or PDF Version

Dy$_{6}$Fe$_{16}$O Structure: A6B16C_cI46_229_e_ch_a-001

Picture of Structure; Click for Big Picture
Prototype Dy$_{6}$Fe$_{16}$O
AFLOW prototype label A6B16C_cI46_229_e_ch_a-001
ICSD 9639
Pearson symbol cI46
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=A6B16C_cI46_229_e_ch_a-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{4}$

Other compounds with this structure

Ba$_{6}$Na$_{16}$N,  Ca$_{6}$Ag$_{16}$N,  Dy$_{6}$Fe$_{16}$O,  Dy$_{6}$Fe$_{16}$O,  Er$_{6}$Fe$_{16}$O,  Gd$_{6}$Fe$_{16}$O,  Ho$_{6}$Fe$_{16}$O,  Tb$_{6}$Fe$_{16}$O,  Y$_{6}$Fe$_{16}$O


  • This is a body-centered cubic structure with vacancies on the octahedral sites adjacent to the oxygen atoms.
  • The (2a) site is often only partially occupied, e.g., Ca$_{6}$Ag$_{16}$N was originally thought to be Ag$_{8}$Ca$_{3}$ (Calvert, 1964), but there is some nitrogen present on the (2a) site. (Villars, 2004)

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) O I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}$ (12e) Dy I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (12e) Dy I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{y}}$ (12e) Dy I
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{y}}$ (12e) Dy I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{z}}$ (12e) Dy I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{z}}$ (12e) Dy I
$\mathbf{B_{12}}$ = $2 y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{14}}$ = $- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{15}}$ = $- 2 y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{16}}$ = $y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{17}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{18}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{19}}$ = $- y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Fe II
$\mathbf{B_{20}}$ = $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+2 y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (24h) Fe II
$\mathbf{B_{21}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (24h) Fe II
$\mathbf{B_{22}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (24h) Fe II
$\mathbf{B_{23}}$ = $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- 2 y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (24h) Fe II

References

  • M. P. Dariel and M. R. Pickus, Structural and magnetic study of some oxygen stabilized rare-earth-iron intermetallic compounds, J. Less-Common Met. 50, 125–137 (1976), doi:10.1016/0022-5088(76)90259-9.
  • L. D. Calvert and C. Rand, The crystal structure of Ag$_{8}$Ca$_{3}$, Acta Cryst. 17, 1175–1176 (1964), doi:10.1107/S0365110X64003024.

Found in

  • P. Villars and K. Cenzual, eds., Structure Types. Part1: Space Groups (230) Ia-3d – (219) F43-c} (Springer-Verlag, Berlin Heidelberg, 2004), chap. Dy$_{6}$Fe$_{16$O, doi:10.1007/10920459_60.

Prototype Generator

aflow --proto=A6B16C_cI46_229_e_ch_a --params=$a,x_{3},y_{4}$

Species:

Running:

Output: