AFLOW Prototype: A6B16C_cI46_229_e_ch_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/Y3T5
or
https://aflow.org/p/A6B16C_cI46_229_e_ch_a-001
or
PDF Version
Prototype | Dy$_{6}$Fe$_{16}$O |
AFLOW prototype label | A6B16C_cI46_229_e_ch_a-001 |
ICSD | 9639 |
Pearson symbol | cI46 |
Space group number | 229 |
Space group symbol | $Im\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A6B16C_cI46_229_e_ch_a-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{4}$ |
Ba$_{6}$Na$_{16}$N, Ca$_{6}$Ag$_{16}$N, Dy$_{6}$Fe$_{16}$O, Dy$_{6}$Fe$_{16}$O, Er$_{6}$Fe$_{16}$O, Gd$_{6}$Fe$_{16}$O, Ho$_{6}$Fe$_{16}$O, Tb$_{6}$Fe$_{16}$O, Y$_{6}$Fe$_{16}$O
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (12e) | Dy I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (12e) | Dy I |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{y}}$ | (12e) | Dy I |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{y}}$ | (12e) | Dy I |
$\mathbf{B_{10}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{z}}$ | (12e) | Dy I |
$\mathbf{B_{11}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{z}}$ | (12e) | Dy I |
$\mathbf{B_{12}}$ | = | $2 y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{13}}$ | = | $y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{14}}$ | = | $- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{15}}$ | = | $- 2 y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{16}}$ | = | $y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{17}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{18}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{19}}$ | = | $- y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Fe II |
$\mathbf{B_{20}}$ | = | $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+2 y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Fe II |
$\mathbf{B_{21}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Fe II |
$\mathbf{B_{22}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Fe II |
$\mathbf{B_{23}}$ | = | $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- 2 y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Fe II |