Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5BCD6_cF416_228_eg_c_b_h-001

This structure originally had the label A5BCD6_cF416_228_eg_c_b_h. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/19XK
or https://aflow.org/p/A5BCD6_cF416_228_eg_c_b_h-001
or PDF Version

CuCrCl$_{5}$[NH$_{3}$]$_{6}$ Structure: A5BCD6_cF416_228_eg_c_b_h-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{5}$CrCuH$_{18}$N$_{6}$
AFLOW prototype label A5BCD6_cF416_228_eg_c_b_h-001
ICSD 22076
Pearson symbol cF416
Space group number 228
Space group symbol $Fd\overline{3}c$
AFLOW prototype command aflow --proto=A5BCD6_cF416_228_eg_c_b_h-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

  • The nitrogen atoms in this structure actually represent NH$_{3}$ complexes centered on the (192h) Wyckoff positions.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) Cu I
$\mathbf{B_{9}}$ = $0$ = $0$ (32c) Cr I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (32c) Cr I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Cr I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Cr I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32c) Cr I
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32c) Cr I
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Cr I
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Cr I
$\mathbf{B_{17}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{18}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{19}}$ = $x_{3} \, \mathbf{a}_{1}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{20}}$ = $- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{21}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+3 x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{22}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{23}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+3 x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{24}}$ = $3 x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{25}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{26}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{27}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{28}}$ = $\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{29}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{30}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{31}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{32}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (64e) Cl I
$\mathbf{B_{33}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{34}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{35}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{36}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{37}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{38}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{39}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{40}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{41}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{42}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{43}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{44}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{45}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{46}}$ = $\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{47}}$ = $- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{48}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{49}}$ = $- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{50}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{51}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{52}}$ = $\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{53}}$ = $\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{54}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{55}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{56}}$ = $- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (96g) Cl II
$\mathbf{B_{57}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{58}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{59}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{60}}$ = $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{61}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{62}}$ = $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{63}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{64}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{65}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{66}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{67}}$ = $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{68}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{69}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{70}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{71}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{72}}$ = $\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{73}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{74}}$ = $\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{75}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{76}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{77}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{78}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{79}}$ = $\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{80}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{81}}$ = $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{82}}$ = $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{83}}$ = $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{84}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{85}}$ = $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{86}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{87}}$ = $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{88}}$ = $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{89}}$ = $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{90}}$ = $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{91}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{92}}$ = $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{93}}$ = $\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{94}}$ = $\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{95}}$ = $\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{96}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{97}}$ = $\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{98}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{99}}$ = $\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{100}}$ = $\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{101}}$ = $\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{102}}$ = $\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{103}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) N I
$\mathbf{B_{104}}$ = $\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) N I

References

  • M. Mori, Y. Saito, and T. Watanabe, The Crystal Structure of [Cr(NH$_{3}$)$_{6}$] [CuCl$_{5}$], Bull. Chem. Soc. Japan 34, 295–296 (1961), doi:10.1246/bcsj.34.295.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A5BCD6_cF416_228_eg_c_b_h --params=$a,x_{3},y_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: