Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B_cI120_230_h_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/V61M
or https://aflow.org/p/A4B_cI120_230_h_c-001
or PDF Version

RhBi$_{4}$ Structure: A4B_cI120_230_h_c-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{4}$Rh
AFLOW prototype label A4B_cI120_230_h_c-001
ICSD 58854
Pearson symbol cI120
Space group number 230
Space group symbol $Ia\overline{3}d$
AFLOW prototype command aflow --proto=A4B_cI120_230_h_c-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • (Glagoleva, 1956) give three slightly different values for the location of the bismuth atoms. We choose their final set of coordinates. The ICSD entry is from the earlier publication (Zhdanov, 1954).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{3}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}$ (24c) Rh I
$\mathbf{B_{4}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{5}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{6}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{9}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{10}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}$ (24c) Rh I
$\mathbf{B_{11}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{12}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (24c) Rh I
$\mathbf{B_{13}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{14}}$ = $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{15}}$ = $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{16}}$ = $- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{17}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{18}}$ = $- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{19}}$ = $\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{20}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{21}}$ = $\left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{22}}$ = $- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{23}}$ = $- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{24}}$ = $\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{25}}$ = $\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{26}}$ = $- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{27}}$ = $- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{28}}$ = $\left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{29}}$ = $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{30}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{31}}$ = $- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{32}}$ = $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{33}}$ = $\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{34}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{35}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{36}}$ = $- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{37}}$ = $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{38}}$ = $\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{39}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{40}}$ = $\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{41}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{42}}$ = $\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{43}}$ = $\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{44}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{45}}$ = $- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{46}}$ = $\left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{47}}$ = $\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{48}}$ = $\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{49}}$ = $\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{50}}$ = $\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{51}}$ = $\left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{52}}$ = $- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{53}}$ = $\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{54}}$ = $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{55}}$ = $\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{56}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{57}}$ = $\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{58}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{59}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I
$\mathbf{B_{60}}$ = $\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) Bi I

References

  • V. P. Glagoleva and G. S. Zhdanov, The Structure of Superconductors. IX. Roentgenographic Determination of the Structure of α-Bi$_{4}$Rh, Soviet Phys.–-JETP 3, 155–158 (1956).
  • G. S. Zhdanov, The binary systems Bi - Ni and Bi - Rh, Trudy Inst. Geol. Nauk Akad. Nauk S.S.S.R. 10, 99–116 (1954).

Found in

  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Bismuth-Rhodium Binary Phase Diagram (1962 Ross R.G.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=A4B_cI120_230_h_c --params=$a,x_{2},y_{2},z_{2}$

Species:

Running:

Output: