Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B_cI10_229_c_a-001

This structure originally had the label A4B_cI10_229_c_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/78LF
or https://aflow.org/p/A4B_cI10_229_c_a-001
or PDF Version

β-Hg$_{4}$Pt Structure: A4B_cI10_229_c_a-001

Picture of Structure; Click for Big Picture
Prototype Hg$_{4}$Pt
AFLOW prototype label A4B_cI10_229_c_a-001
ICSD 150772
Pearson symbol cI10
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=A4B_cI10_229_c_a-001
--params=$a$

Other compounds with this structure

Hg$_{4}$Ni,  Hg$_{4}$Pd,  Hg$_{4}$U


  • (Bauer, 1953) give the lattice constant in kX units. We convert this to Ångströms by multiplying that number by 1.00202 (Wood, 1947).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Pt I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Hg I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Hg I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Hg I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Hg I

References

  • E. Bauer, H. Nowotny, and A. Stempfl, Röntgenographische Untersuchungen im System: Platin-Quecksilber, Monatsh. Chem. 84, 211–212 (1953), doi:10.1007/BF00899140.
  • E. A. Wood, The Conversion Factor for kX Units to Angström Units, J. App. Phys. 18, 929–930 (1947), doi:10.1063/1.1697570.

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.

Prototype Generator

aflow --proto=A4B_cI10_229_c_a --params=$a$

Species:

Running:

Output: