Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4BC4D6_cP360_222_2i_h_2i_3i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7XG8
or https://aflow.org/p/A4BC4D6_cP360_222_2i_h_2i_3i-001
or PDF Version

Co(H$_{2}$O)$_{2}$(C$_{4}$O$_{4}$) Structure: A4BC4D6_cP360_222_2i_h_2i_3i-001

Picture of Structure; Click for Big Picture
Prototype C$_{4}$CoH$_{4}$O$_{6}$
AFLOW prototype label A4BC4D6_cP360_222_2i_h_2i_3i-001
ICSD 110022
CCDC 187771
Pearson symbol cP360
Space group number 222
Space group symbol $Pn\overline{3}n$
AFLOW prototype command aflow --proto=A4BC4D6_cP360_222_2i_h_2i_3i-001
--params=$a, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$

Other compounds with this structure

Zn(H$_{2}$O)$_{2}$(C$_{4}$O$_{4}$)


  • There is no ICSD entry for (Neeraj, 2002). The ICSD entry is from (Naether, 2002).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{5}}$ = $y_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{6}}$ = $y_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{7}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{8}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{9}}$ = $y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{10}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{11}}$ = $y_{1} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{12}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{13}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{15}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{16}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{17}}$ = $- y_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{18}}$ = $- y_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{19}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{20}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{21}}$ = $- y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{22}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{23}}$ = $- y_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{24}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24h) Co I
$\mathbf{B_{25}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{26}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{27}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{28}}$ = $x_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{29}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{30}}$ = $z_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{31}}$ = $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{32}}$ = $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{33}}$ = $y_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{34}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{35}}$ = $y_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{36}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{37}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{38}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{39}}$ = $y_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{40}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{41}}$ = $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{42}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{43}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{44}}$ = $x_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{45}}$ = $z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{46}}$ = $z_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{47}}$ = $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{48}}$ = $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{49}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{50}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{51}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{52}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{53}}$ = $- z_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{54}}$ = $- z_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{55}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{56}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{57}}$ = $- y_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{58}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{59}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{60}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{61}}$ = $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{62}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{63}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{64}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{65}}$ = $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{66}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{67}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{68}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{69}}$ = $- z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{70}}$ = $- z_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{71}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{72}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C I
$\mathbf{B_{73}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{74}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{75}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{76}}$ = $x_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{77}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{78}}$ = $z_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{79}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{80}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{81}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{82}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{83}}$ = $y_{3} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{84}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{85}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{86}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{87}}$ = $y_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{88}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{89}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{90}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{91}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{92}}$ = $x_{3} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{93}}$ = $z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{94}}$ = $z_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{95}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{96}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{97}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{98}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{99}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{100}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{101}}$ = $- z_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{102}}$ = $- z_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{103}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{104}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{105}}$ = $- y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{106}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{107}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{108}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{109}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{110}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{111}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{112}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{113}}$ = $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{114}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{115}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{116}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{117}}$ = $- z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{118}}$ = $- z_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{119}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{120}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) C II
$\mathbf{B_{121}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{122}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{123}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{124}}$ = $x_{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{125}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{126}}$ = $z_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{127}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{128}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{129}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{130}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{131}}$ = $y_{4} \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{132}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{133}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{134}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{135}}$ = $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{136}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{137}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{138}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{139}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{140}}$ = $x_{4} \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{141}}$ = $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{142}}$ = $z_{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{143}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{144}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{145}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{146}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{147}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{148}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{149}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{150}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{151}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{152}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{153}}$ = $- y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{154}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{155}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{156}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{157}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{158}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{159}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{160}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{161}}$ = $- x_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{162}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{163}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{164}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{165}}$ = $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{166}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{167}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{168}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H I
$\mathbf{B_{169}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{170}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{171}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{172}}$ = $x_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{173}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{174}}$ = $z_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{175}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{176}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{177}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{178}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{179}}$ = $y_{5} \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{180}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{181}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{182}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{183}}$ = $y_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{184}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{185}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{186}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{187}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{188}}$ = $x_{5} \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{189}}$ = $z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{190}}$ = $z_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{191}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{192}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{193}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{194}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{195}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{196}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{197}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{198}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{199}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{200}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{201}}$ = $- y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{202}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{203}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{204}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{205}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{206}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{207}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{208}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{209}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{210}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{211}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{212}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{213}}$ = $- z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{214}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{215}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{216}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) H II
$\mathbf{B_{217}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{218}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{219}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{220}}$ = $x_{6} \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{221}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{222}}$ = $z_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{223}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{224}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{225}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{226}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{227}}$ = $y_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{228}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{229}}$ = $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{230}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{231}}$ = $y_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{232}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{233}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{234}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{235}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{236}}$ = $x_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{237}}$ = $z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{238}}$ = $z_{6} \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{239}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{240}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{241}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{242}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{243}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{244}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{245}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{246}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{247}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{248}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{249}}$ = $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{250}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{251}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{252}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{253}}$ = $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{254}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{255}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{256}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{257}}$ = $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{258}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{259}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{260}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{261}}$ = $- z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{262}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{263}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{264}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O I
$\mathbf{B_{265}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{266}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{267}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{268}}$ = $x_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{269}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{270}}$ = $z_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{271}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{272}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{273}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{274}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{275}}$ = $y_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{276}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{277}}$ = $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{278}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{279}}$ = $y_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{280}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{281}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{282}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{283}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{284}}$ = $x_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{285}}$ = $z_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{286}}$ = $z_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{287}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{288}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{289}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{290}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{291}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{292}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{293}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{294}}$ = $- z_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{295}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{296}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{297}}$ = $- y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{298}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{299}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{300}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{301}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{302}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{303}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{304}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{305}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{306}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{307}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{308}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{309}}$ = $- z_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{310}}$ = $- z_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{311}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{312}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O II
$\mathbf{B_{313}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{314}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{315}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{316}}$ = $x_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{317}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{318}}$ = $z_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{319}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{320}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{321}}$ = $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{322}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{323}}$ = $y_{8} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{324}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{325}}$ = $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{326}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{327}}$ = $y_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{328}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{329}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{330}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{331}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{332}}$ = $x_{8} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{333}}$ = $z_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{334}}$ = $z_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{335}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{336}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{337}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{338}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{339}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{340}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{341}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{342}}$ = $- z_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{343}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{344}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{345}}$ = $- y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{346}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{347}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{348}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{349}}$ = $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{350}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{351}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{352}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{353}}$ = $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{354}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{355}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{356}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{357}}$ = $- z_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{358}}$ = $- z_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{359}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48i) O III
$\mathbf{B_{360}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) O III

References

  • S. Neeraj, M. L. Noy, C. N. R. Rao, and A. K. Cheetham, Sodalite networks formed by metal squarates, Solid State Sci. 4, 1231–1236 (2002), doi:10.1016/S1293-2558(02)00003-1.
  • C. Näther, J. Greve, and I. Jeß, Poly­[di­aqua(μ4-squarato-O,O',O,O')­iron(II)], Acta Crystallogr. Sect. E 58, m507–m509 (2002), doi:10.1107/S1600536802015647.

Found in

  • F. Hoffmann, The Fascination of Crystals and Symmetry (2015). 230 – The Space Group List Project.

Prototype Generator

aflow --proto=A4BC4D6_cP360_222_2i_h_2i_3i --params=$a,y_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8}$

Species:

Running:

Output: