Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4BC12_cI34_204_c_a_g-001

This structure originally had the label A4BC12_cI34_204_c_a_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/GXVQ
or https://aflow.org/p/A4BC12_cI34_204_c_a_g-001
or PDF Version

LaFe$_{4}$P$_{12}$ Structure: A4BC12_cI34_204_c_a_g-001

Picture of Structure; Click for Big Picture
Prototype LaFe$_{4}$P$_{12}$
AFLOW prototype label A4BC12_cI34_204_c_a_g-001
ICSD 1286
Pearson symbol cI34
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=A4BC12_cI34_204_c_a_g-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

CeFe$_{4}$P$_{12}$,  EuFe$_{4}$P$_{12}$,  NdFe$_{4}$P$_{12}$,  PrFe$_{4}$P$_{12}$,  SmFe$_{4}$P$_{12}$,  CeRu$_{4}$P$_{12}$,  EuRu$_{4}$P$_{12}$,  LaRu$_{4}$P$_{12}$,  NdRu$_{4}$P$_{12}$,  PrRu$_{4}$P$_{12}$,  SmRu$_{4}$P$_{12}$,  CeOs$_{4}$P$_{12}$,  LaOs$_{4}$P$_{12}$,  NdOs$_{4}$P$_{12}$,  PrOs$_{4}$P$_{12}$,  SmOs$_{4}$P$_{12}$,  CeFe$_{4}$Sb$_{12}$,  LaFe$_{4}$Sb$_{12}$,  PrFe$_{4}$Sb$_{12}$,  SmFe$_{4}$Sb$_{12}$,  CeRu$_{4}$Sb$_{12}$,  EuRu$_{4}$Sb$_{12}$,  LaRu$_{4}$Sb$_{12}$,  NdRu$_{4}$Sb$_{12}$,  PrRu$_{4}$Sb$_{12}$,  SmRu$_{4}$Sb$_{12}$,  CeOs$_{4}$Sb$_{12}$,  EuOs$_{4}$Sb$_{12}$,  LaOs$_{4}$Sb$_{12}$,  NdOs$_{4}$Sb$_{12}$,  PrOs$_{4}$Sb$_{12}$,  SmOs$_{4}$Sb$_{12}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) La I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{6}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{7}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{8}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{9}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{10}}$ = $y_{3} \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{11}}$ = $- y_{3} \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{12}}$ = $y_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{13}}$ = $- y_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24g) P I
$\mathbf{B_{14}}$ = $z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (24g) P I
$\mathbf{B_{15}}$ = $z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (24g) P I
$\mathbf{B_{16}}$ = $- z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (24g) P I
$\mathbf{B_{17}}$ = $- z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (24g) P I

References

  • W. Jeitschko and D. Braun, LaFe$_{4}$P$_{12}$ with filled CoAs$_{3}$-type structure and isotypic lanthanoid-transition metal polyphosphides, Acta Crystallogr. Sect. B 33, 3401–3406 (1977), doi:10.1107/S056774087701108X.

Found in

  • C. R. Rotundu, Novel Heavy Fermion Behavior in Praseodymium-based Materials: Experimental Study of PrOs$_{4}$Sb$_{12}$ (2007). Ph. D. Thesis, University of Florida.
  • D. J. Braun and W. Jeitschko, Preparation and structural investigations of antimonides with the LaFe$_{4}$P$_{12}$ structure, J. Less-Common Met. 72, 147–156 (1980), doi:10.1016/0022-5088(80)90260-X.

Prototype Generator

aflow --proto=A4BC12_cI34_204_c_a_g --params=$a,y_{3},z_{3}$

Species:

Running:

Output: