AFLOW Prototype: A4BC12_cI34_204_c_a_g-001
This structure originally had the label A4BC12_cI34_204_c_a_g. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/GXVQ
or
https://aflow.org/p/A4BC12_cI34_204_c_a_g-001
or
PDF Version
Prototype | LaFe$_{4}$P$_{12}$ |
AFLOW prototype label | A4BC12_cI34_204_c_a_g-001 |
ICSD | 1286 |
Pearson symbol | cI34 |
Space group number | 204 |
Space group symbol | $Im\overline{3}$ |
AFLOW prototype command |
aflow --proto=A4BC12_cI34_204_c_a_g-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$ |
CeFe$_{4}$P$_{12}$, EuFe$_{4}$P$_{12}$, NdFe$_{4}$P$_{12}$, PrFe$_{4}$P$_{12}$, SmFe$_{4}$P$_{12}$, CeRu$_{4}$P$_{12}$, EuRu$_{4}$P$_{12}$, LaRu$_{4}$P$_{12}$, NdRu$_{4}$P$_{12}$, PrRu$_{4}$P$_{12}$, SmRu$_{4}$P$_{12}$, CeOs$_{4}$P$_{12}$, LaOs$_{4}$P$_{12}$, NdOs$_{4}$P$_{12}$, PrOs$_{4}$P$_{12}$, SmOs$_{4}$P$_{12}$, CeFe$_{4}$Sb$_{12}$, LaFe$_{4}$Sb$_{12}$, PrFe$_{4}$Sb$_{12}$, SmFe$_{4}$Sb$_{12}$, CeRu$_{4}$Sb$_{12}$, EuRu$_{4}$Sb$_{12}$, LaRu$_{4}$Sb$_{12}$, NdRu$_{4}$Sb$_{12}$, PrRu$_{4}$Sb$_{12}$, SmRu$_{4}$Sb$_{12}$, CeOs$_{4}$Sb$_{12}$, EuOs$_{4}$Sb$_{12}$, LaOs$_{4}$Sb$_{12}$, NdOs$_{4}$Sb$_{12}$, PrOs$_{4}$Sb$_{12}$, SmOs$_{4}$Sb$_{12}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | La I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{6}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{7}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{8}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{9}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{10}}$ | = | $y_{3} \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{11}}$ | = | $- y_{3} \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{12}}$ | = | $y_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{13}}$ | = | $- y_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (24g) | P I |
$\mathbf{B_{14}}$ | = | $z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (24g) | P I |
$\mathbf{B_{15}}$ | = | $z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (24g) | P I |
$\mathbf{B_{16}}$ | = | $- z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (24g) | P I |
$\mathbf{B_{17}}$ | = | $- z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (24g) | P I |