AFLOW Prototype: A4B4C6D13_cI54_217_c_c_d_ag-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/YXNP
or
https://aflow.org/p/A4B4C6D13_cI54_217_c_c_d_ag-001
or
PDF Version
Prototype | Ba$_{4}$Ga$_{8}$Sn$_{15}$ |
AFLOW prototype label | A4B4C6D13_cI54_217_c_c_d_ag-001 |
ICSD | none |
Pearson symbol | cI54 |
Space group number | 217 |
Space group symbol | $I\overline{4}3m$ |
AFLOW prototype command |
aflow --proto=A4B4C6D13_cI54_217_c_c_d_ag-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{5}, \allowbreak z_{5}$ |
Ba$_{8}$Ga$_{16}$Ge$_{30}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Sn I |
$\mathbf{B_{2}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (8c) | Ba I |
$\mathbf{B_{3}}$ | = | $- 2 x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (8c) | Ba I |
$\mathbf{B_{4}}$ | = | $- 2 x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (8c) | Ba I |
$\mathbf{B_{5}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (8c) | Ba I |
$\mathbf{B_{6}}$ | = | $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (8c) | Ga I |
$\mathbf{B_{7}}$ | = | $- 2 x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (8c) | Ga I |
$\mathbf{B_{8}}$ | = | $- 2 x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (8c) | Ga I |
$\mathbf{B_{9}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (8c) | Ga I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (12d) | Ge I |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12d) | Ge I |
$\mathbf{B_{12}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12d) | Ge I |
$\mathbf{B_{13}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (12d) | Ge I |
$\mathbf{B_{14}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12d) | Ge I |
$\mathbf{B_{15}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12d) | Ge I |
$\mathbf{B_{16}}$ | = | $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+2 x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{17}}$ | = | $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- 2 x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{18}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{19}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{20}}$ | = | $2 x_{5} \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{21}}$ | = | $- 2 x_{5} \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{22}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{23}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{24}}$ | = | $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{25}}$ | = | $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- 2 x_{5} \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{26}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |
$\mathbf{B_{27}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Sn II |