Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B4C6D13_cI54_217_c_c_d_ag-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/YXNP
or https://aflow.org/p/A4B4C6D13_cI54_217_c_c_d_ag-001
or PDF Version

α-Ba$_{8}$Ga$_{16}$Sn$_{30}$ Clathrate Structure: A4B4C6D13_cI54_217_c_c_d_ag-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{4}$Ga$_{8}$Sn$_{15}$
AFLOW prototype label A4B4C6D13_cI54_217_c_c_d_ag-001
ICSD none
Pearson symbol cI54
Space group number 217
Space group symbol $I\overline{4}3m$
AFLOW prototype command aflow --proto=A4B4C6D13_cI54_217_c_c_d_ag-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

Ba$_{8}$Ga$_{16}$Ge$_{30}$


  • There is a considerable amount of disorder in this system:
    • The (2a) site is 84.2% tin and 15.8% gallium. We label it Sn.
    • The first (8c) site is pure barium, labeled Ba.
    • The second (8c) site is 76.6% gallium and 23.4% tin, and is labeled Ga.
    • The (12d) site is 81.60% tin and 18.4% gallium. We label this as germanium, Ge, since that is another possible component of this compound and to avoid confusion with the other tin/gallium sites.
    • The (24g) site is 68.6% gallium and 31.4% tin, and is labeled Sn.
  • The occupation of each of the Sn/Ga sites can be varied during crystal growth, and controls the semiconducting behavior of the sample (Avila, 2006).
  • (Aliva, 2008) showed that this compound also exists as $\beta$–Ba$_{8}$Ga$_{16}$Sn$_{30}$, another clathrate structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Sn I
$\mathbf{B_{2}}$ = $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Ba I
$\mathbf{B_{3}}$ = $- 2 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Ba I
$\mathbf{B_{4}}$ = $- 2 x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Ba I
$\mathbf{B_{5}}$ = $- 2 x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Ba I
$\mathbf{B_{6}}$ = $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8c) Ga I
$\mathbf{B_{7}}$ = $- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8c) Ga I
$\mathbf{B_{8}}$ = $- 2 x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8c) Ga I
$\mathbf{B_{9}}$ = $- 2 x_{3} \, \mathbf{a}_{1}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8c) Ga I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (12d) Ge I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{12}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{13}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (12d) Ge I
$\mathbf{B_{14}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{15}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12d) Ge I
$\mathbf{B_{16}}$ = $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+2 x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{17}}$ = $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- 2 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{18}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{19}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{20}}$ = $2 x_{5} \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{21}}$ = $- 2 x_{5} \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{22}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{23}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{24}}$ = $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{25}}$ = $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- 2 x_{5} \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{26}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{27}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24g) Sn II

References

  • M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Glasslike versus crystalline thermal conductivity in carrier-tuned Ba$_{8}$Ga$_{16}$X$_{30}$ clathrates (X=Ge,Sn), Phys. Rev. B 74, 125109 (2006), doi:10.1103/PhysRevB.74.125109.
  • M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Ba$_{8}$Ga$_{16}$Sn$_{30}$ with type-I clathrate structure: Drastic suppression of heat conduction, Appl. Phys. Lett. 92, 041901 (2007), doi:10.1063/1.2831926.

Found in

  • M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Ba$_{8}$Ga$_{16}$Sn$_{30}$ with type-I clathrate structure: Drastic suppression of heat conduction, Appl. Phys. Lett. 92, 041901 (2007), doi:10.1063/1.2831926.

Prototype Generator

aflow --proto=A4B4C6D13_cI54_217_c_c_d_ag --params=$a,x_{2},x_{3},x_{5},z_{5}$

Species:

Running:

Output: