Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B3_cI28_220_c_a-001

This structure originally had the label A4B3_cI28_220_c_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/JM9C
or https://aflow.org/p/A4B3_cI28_220_c_a-001
or PDF Version

Th$_{3}$P$_{4}$ ($D7_{3}$) Structure: A4B3_cI28_220_c_a-001

Picture of Structure; Click for Big Picture
Prototype P$_{4}$Th$_{3}$
AFLOW prototype label A4B3_cI28_220_c_a-001
Strukturbericht designation $D7_{3}$
ICSD 648207
Pearson symbol cI28
Space group number 220
Space group symbol $I\overline{4}3d$
AFLOW prototype command aflow --proto=A4B3_cI28_220_c_a-001
--params=$a, \allowbreak x_{2}$

Other compounds with this structure

Bi$_{3}$Yb$_{4}$,  Ce$_{3}$S$_{4}$,  Ce$_{3}$Se$_{4}$,  Ce$_{3}$Te$_{4}$,  Eu$_{3}$S$_{4}$,  La$_{3}$S$_{4}$,  La$_{3}$Se$_{4}$,  La$_{3}$Te$_{4}$,  N$_{3}$P$_{4}$,  Nd$_{3}$S$_{4}$,  Nd$_{3}$Se$_{4}$,  Nd$_{3}$Te$_{4}$,  Pa$_{3}$As$_{4}$,  Pa$_{3}$P$_{4}$,  Pa$_{3}$Sb$_{4}$,  Pr$_{3}$S$_{4}$,  Pr$_{3}$Se$_{4}$,  Pr$_{3}$Te$_{4}$,  Sm$_{3}$S$_{4}$,  Sm$_{3}$Se$_{4}$,  Sm$_{3}$Te$_{4}$,  Th$_{3}$As$_{4}$,  Th$_{3}$As$_{4}$,  Th$_{3}$Bi$_{4}$,  Th$_{3}$P$_{4}$,  Th$_{3}$Sb$_{4}$,  U$_{3}$As$_{4}$,  U$_{3}$Bi$_{4}$,  U$_{3}$P$_{4}$,  U$_{3}$Sb$_{4}$,  U$_{3}$Te$_{4}$,  BaCe$_{2}$S$_{4}$,  BaCe$_{2}$Se$_{4}$,  BaLa$_{2}$S$_{4}$,  BaLa$_{2}$Se$_{4}$,  BaNd$_{2}$S$_{4}$,  BaNd$_{2}$Se$_{4}$,  BaPr$_{2}$S$_{4}$,  BaPr$_{2}$Se$_{4}$,  CaCe$_{2}$S$_{4}$,  CaDy$_{2}$S$_{4}$,  CaGd$_{2}$S$_{4}$,  CaLa$_{2}$S$_{4}$,  CaNd$_{2}$S$_{4}$,  CaPr$_{2}$S$_{4}$,  CaSm$_{2}$S$_{4}$,  CaTb$_{2}$S$_{4}$,  SrCe$_{2}$S$_{4}$,  SrCe$_{2}$Se$_{4}$,  SrGd$_{2}$S$_{4}$,  SrGd$_{2}$Se$_{4}$,  SrLa$_{2}$S$_{4}$,  SrLa$_{2}$Se$_{4}$,  SrNd$_{2}$S$_{4}$,  SrNd$_{2}$Se$_{4}$,  SrPr$_{2}$S$_{4}$,  SrPr$_{2}$Se$_{4}$,  SrSm$_{2}$S$_{4}$,  SrSm$_{2}$Se$_{4}$,  Ac$_{2}$S$_{3}$,  Am$_{2}$S$_{3}$,  Ce$_{2}$S$_{3}$,  Ce$_{2}$Te$_{3}$,  Gd$_{2}$S$_{3}$,  La$_{2}$S$_{3}$,  La$_{2}$Te$_{3}$,  Nd$_{2}$S$_{3}$,  Nd$_{2}$Te$_{3}$,  Pr$_{2}$S$_{3}$,  Pr$_{2}$Te$_{3}$,  Sm$_{2}$S$_{3}$,  Sm$_{2}$Te$_{3}$,  Tb$_{2}$S$_{3}$


  • The Th$_{3}$P$_{4}$ structure allows a large degree of disorder in the thorium (12a) site. Compounds of the form AB$_{2}$C$_{4}$ have the A and B atoms mixed on the (12a) site (Flahaut, 1965). Compounds of the form A$_{2}$B$_{3}$ should more properly be listed as A$_{3-x}$B$_{4}$, with $x$ in the range [0,1/3] and a corresponding number of vacancies distributed statistically on the (12a) site (Zachariasen, 1949).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12a) Th I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12a) Th I
$\mathbf{B_{3}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}$ (12a) Th I
$\mathbf{B_{4}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}$ (12a) Th I
$\mathbf{B_{5}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12a) Th I
$\mathbf{B_{6}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12a) Th I
$\mathbf{B_{7}}$ = $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{9}}$ = $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{10}}$ = $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{11}}$ = $\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{13}}$ = $- 2 x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) P I
$\mathbf{B_{14}}$ = $- 2 x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) P I

References

  • K. Meisel, Kristallstrukturen von Thoriumphosphiden, Z. Anorganische und Allgemeine Chemie 240, 300–312 (1939), doi:10.1002/zaac.19392400403.
  • J. Flahaut, M. Guittard, M. Patrie, M. P. Pardo, S. M. Golabi, and L. Domange, Phase cubiques type Th$_{3}$P$_{4}$ dans les sulfures, les séléniures et les tellurures L$_{2}$X$_{3}$ et L$_{3}$X$_{4}$ des terres rares, et dans leurs combinaisons ML$_{2}$X$_{4}$ avec les sulfures et séléniures MX de calcium, strontium et baryum. Formation et propriétés cristallines, Acta Cryst. 19, 14–19 (1965), doi:10.1107/S0365110X65002694.
  • W. H. Zachariasen, Crystal chemical studies of the 5f-series of elements. VI. The Ce$_{2}$S$_{3}$-Ce$_{3}$S$_{4}$ type of structure, Acta Cryst. 2, 57–60 (1949), doi:10.1107/S0365110X49000126.

Prototype Generator

aflow --proto=A4B3_cI28_220_c_a --params=$a,x_{2}$

Species:

Running:

Output: