AFLOW Prototype: A4B3_cI28_220_c_a-001
This structure originally had the label A4B3_cI28_220_c_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/JM9C
or
https://aflow.org/p/A4B3_cI28_220_c_a-001
or
PDF Version
Prototype | P$_{4}$Th$_{3}$ |
AFLOW prototype label | A4B3_cI28_220_c_a-001 |
Strukturbericht designation | $D7_{3}$ |
ICSD | 648207 |
Pearson symbol | cI28 |
Space group number | 220 |
Space group symbol | $I\overline{4}3d$ |
AFLOW prototype command |
aflow --proto=A4B3_cI28_220_c_a-001
--params=$a, \allowbreak x_{2}$ |
Bi$_{3}$Yb$_{4}$, Ce$_{3}$S$_{4}$, Ce$_{3}$Se$_{4}$, Ce$_{3}$Te$_{4}$, Eu$_{3}$S$_{4}$, La$_{3}$S$_{4}$, La$_{3}$Se$_{4}$, La$_{3}$Te$_{4}$, N$_{3}$P$_{4}$, Nd$_{3}$S$_{4}$, Nd$_{3}$Se$_{4}$, Nd$_{3}$Te$_{4}$, Pa$_{3}$As$_{4}$, Pa$_{3}$P$_{4}$, Pa$_{3}$Sb$_{4}$, Pr$_{3}$S$_{4}$, Pr$_{3}$Se$_{4}$, Pr$_{3}$Te$_{4}$, Sm$_{3}$S$_{4}$, Sm$_{3}$Se$_{4}$, Sm$_{3}$Te$_{4}$, Th$_{3}$As$_{4}$, Th$_{3}$As$_{4}$, Th$_{3}$Bi$_{4}$, Th$_{3}$P$_{4}$, Th$_{3}$Sb$_{4}$, U$_{3}$As$_{4}$, U$_{3}$Bi$_{4}$, U$_{3}$P$_{4}$, U$_{3}$Sb$_{4}$, U$_{3}$Te$_{4}$, BaCe$_{2}$S$_{4}$, BaCe$_{2}$Se$_{4}$, BaLa$_{2}$S$_{4}$, BaLa$_{2}$Se$_{4}$, BaNd$_{2}$S$_{4}$, BaNd$_{2}$Se$_{4}$, BaPr$_{2}$S$_{4}$, BaPr$_{2}$Se$_{4}$, CaCe$_{2}$S$_{4}$, CaDy$_{2}$S$_{4}$, CaGd$_{2}$S$_{4}$, CaLa$_{2}$S$_{4}$, CaNd$_{2}$S$_{4}$, CaPr$_{2}$S$_{4}$, CaSm$_{2}$S$_{4}$, CaTb$_{2}$S$_{4}$, SrCe$_{2}$S$_{4}$, SrCe$_{2}$Se$_{4}$, SrGd$_{2}$S$_{4}$, SrGd$_{2}$Se$_{4}$, SrLa$_{2}$S$_{4}$, SrLa$_{2}$Se$_{4}$, SrNd$_{2}$S$_{4}$, SrNd$_{2}$Se$_{4}$, SrPr$_{2}$S$_{4}$, SrPr$_{2}$Se$_{4}$, SrSm$_{2}$S$_{4}$, SrSm$_{2}$Se$_{4}$, Ac$_{2}$S$_{3}$, Am$_{2}$S$_{3}$, Ce$_{2}$S$_{3}$, Ce$_{2}$Te$_{3}$, Gd$_{2}$S$_{3}$, La$_{2}$S$_{3}$, La$_{2}$Te$_{3}$, Nd$_{2}$S$_{3}$, Nd$_{2}$Te$_{3}$, Pr$_{2}$S$_{3}$, Pr$_{2}$Te$_{3}$, Sm$_{2}$S$_{3}$, Sm$_{2}$Te$_{3}$, Tb$_{2}$S$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12a) | Th I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (12a) | Th I |
$\mathbf{B_{3}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}$ | (12a) | Th I |
$\mathbf{B_{4}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}$ | (12a) | Th I |
$\mathbf{B_{5}}$ | = | $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (12a) | Th I |
$\mathbf{B_{6}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (12a) | Th I |
$\mathbf{B_{7}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{9}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{10}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{11}}$ | = | $\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{13}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16c) | P I |
$\mathbf{B_{14}}$ | = | $- 2 x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16c) | P I |