Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B3_cI112_230_af_g-001

This structure originally had the label A4B3_cI112_230_af_g. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/K0Z6
or https://aflow.org/p/A4B3_cI112_230_af_g-001
or PDF Version

Ga$_{4}$Ni$_{3}$ Structure: A4B3_cI112_230_af_g-001

Picture of Structure; Click for Big Picture
Prototype Ga$_{4}$Ni$_{3}$
AFLOW prototype label A4B3_cI112_230_af_g-001
ICSD 103864
Pearson symbol cI112
Space group number 230
Space group symbol $Ia\overline{3}d$
AFLOW prototype command aflow --proto=A4B3_cI112_230_af_g-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{3}$

  • This is a simple defect superstructure of the CsCl ($B2$) structure. If GaNi $B2$ is expanded into a 128 atom supercell, we can describe it using space group $Ia\overline{3}d$ #230, with Ga atoms on the (16a) and (48f) Wyckoff sites and Ni atoms on the (16b) and (48g) sites. Removing the Ni atoms from the (16b) sites yields this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (16a) Ga I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (16a) Ga I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (16a) Ga I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (16a) Ga I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16a) Ga I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16a) Ga I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (16a) Ga I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16a) Ga I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{11}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (48f) Ga II
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{13}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{14}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{15}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{16}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ (48f) Ga II
$\mathbf{B_{17}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{18}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{19}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{20}}$ = $x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{21}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{22}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{23}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (48f) Ga II
$\mathbf{B_{24}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (48f) Ga II
$\mathbf{B_{25}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{26}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{27}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{28}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{29}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{30}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{31}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{32}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) Ga II
$\mathbf{B_{33}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{34}}$ = $- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{35}}$ = $\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{36}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{37}}$ = $\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{38}}$ = $- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{39}}$ = $\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{40}}$ = $- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{41}}$ = $- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{42}}$ = $- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{43}}$ = $\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{44}}$ = $\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{45}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{3} + \frac{5}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{7}{8}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{46}}$ = $\left(2 y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{5}{8}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{47}}$ = $- \left(2 y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{5}{8}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{48}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{3} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{7}{8}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{49}}$ = $- \left(y_{3} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{3} + \frac{5}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{50}}$ = $\left(y_{3} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{7}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{51}}$ = $- \left(y_{3} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{7}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{52}}$ = $\left(y_{3} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(y_{3} - \frac{5}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{53}}$ = $\left(y_{3} + \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{7}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{54}}$ = $\left(y_{3} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{55}}$ = $- \left(y_{3} - \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{5}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I
$\mathbf{B_{56}}$ = $- \left(y_{3} - \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48g) Ni I

References

Found in

  • P. Villars and K. Cenzual, eds., Structure Types. Part 1: Space Groups (230) Ia-3d – (219) F43-c} (Springer-Verlag, Berlin Heidelberg, 2004), chap. Ni$_{3}$Ga$_{4$.

Prototype Generator

aflow --proto=A4B3_cI112_230_af_g --params=$a,x_{2},y_{3}$

Species:

Running:

Output: