Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B17C_cF88_216_e_aefg_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/9Q9K
or https://aflow.org/p/A4B17C_cF88_216_e_aefg_c-001
or PDF Version

Cubic Cr$_{4}$PtGa$_{17}$ Structure: A4B17C_cF88_216_e_aefg_c-001

Picture of Structure; Click for Big Picture
Prototype Cr$_{4}$Ga$_{17}$Pt
AFLOW prototype label A4B17C_cF88_216_e_aefg_c-001
ICSD 36836
Pearson symbol cF88
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A4B17C_cF88_216_e_aefg_c-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$

  • (Gui, 2021) describe this compound as a rhombohedral structure in space group $R3m$ #160, a distortion of the half-Heusler ($C1_{b}$) structure. Uncertainty in the atomic positions leads to this cubic structure, which we use as the prototype.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Ga I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) Pt I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Cr I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Cr I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Cr I
$\mathbf{B_{6}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Cr I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Ga II
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Ga II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Ga II
$\mathbf{B_{10}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Ga II
$\mathbf{B_{11}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}$ (24f) Ga III
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (24f) Ga III
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{y}}$ (24f) Ga III
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{y}}$ (24f) Ga III
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{z}}$ (24f) Ga III
$\mathbf{B_{16}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{z}}$ (24f) Ga III
$\mathbf{B_{17}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Ga IV
$\mathbf{B_{18}}$ = $x_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Ga IV
$\mathbf{B_{19}}$ = $x_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Ga IV
$\mathbf{B_{20}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Ga IV
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24g) Ga IV
$\mathbf{B_{22}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Ga IV

References

  • X. Gui, E. Feng, H. Cao, and R. J. Cava, Ferromagnetic Cr$_{4}$PtGa$_{17}$: A Novel Half-Heusler-Type Compound with a Breathing Pyrochlore Lattice, J. Am. Chem. Soc. 143, 14342–14351 (2021), doi:10.1021/jacs.1c06667.

Prototype Generator

aflow --proto=A4B17C_cF88_216_e_aefg_c --params=$a,x_{3},x_{4},x_{5},x_{6}$

Species:

Running:

Output: