Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A41B6_cP188_201_b2efg5h_h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/D917
or https://aflow.org/p/A41B6_cP188_201_b2efg5h_h-001
or PDF Version

Ce$_{6}$Cd$_{37}$ Structure: A41B6_cP188_201_b2efg5h_h-001

Picture of Structure; Click for Big Picture
Prototype Cd$_{37}$Ce$_{6}$
AFLOW prototype label A41B6_cP188_201_b2efg5h_h-001
ICSD 54599
Pearson symbol cP188
Space group number 201
Space group symbol $Pn\overline{3}$
AFLOW prototype command aflow --proto=A41B6_cP188_201_b2efg5h_h-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • The compound now known as Ce$_{6}$Cd$_{37}$ was originally thought to have the YCd$_{6}$ structure, but (Armbrüster, 2000) found that it actually has the structure shown here.
  • All of the sites are fully occupied except the one labeled Cd-X, where 2/3 of the sites are vacant, giving the correct stoichiometry. We use the data taken at 298K.
  • (Armbrüster, 2000) give the structure of Ce$_{6}$Cd$_{37}$ in setting 1 of space group $Pn\overline{3}$ #201. We used FINDSYM to change this to the standard setting 2.
  • (Armbrüster, 2000) also present a slightly different version of the YCd$_{6}$ structure than that presented in the prototype paper, (Larson, 1972).
  • We used FINDSYM to transform this to the standard second setting, which places a cerium atom and the inversion site at the origin.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4b) Cd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (4b) Cd I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Cd I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Cd I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{7}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{8}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{10}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{12}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd II
$\mathbf{B_{13}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{14}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{15}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{16}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{17}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{18}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{19}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{20}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8e) Cd III
$\mathbf{B_{21}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{22}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{23}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{24}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{25}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{26}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{27}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{28}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{29}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{30}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{31}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{32}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12f) Cd IV
$\mathbf{B_{33}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{34}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{35}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{36}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{37}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{38}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{39}}$ = $- x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{40}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{41}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{42}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{43}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{44}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12g) Cd V
$\mathbf{B_{45}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{46}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{47}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{48}}$ = $x_{6} \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{49}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{50}}$ = $z_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{51}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{52}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{53}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{54}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{55}}$ = $y_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{56}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{57}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{58}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{59}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{60}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{61}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{62}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{63}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{64}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{65}}$ = $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{66}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{67}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{68}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24h) Cd VI
$\mathbf{B_{69}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{70}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{71}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{72}}$ = $x_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{73}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{74}}$ = $z_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{75}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{76}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{77}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{78}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{79}}$ = $y_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{80}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{81}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{82}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{83}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{84}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{85}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{86}}$ = $- z_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{87}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{88}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{89}}$ = $- y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{90}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{91}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{92}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24h) Cd VII
$\mathbf{B_{93}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{94}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{95}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{96}}$ = $x_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{97}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{98}}$ = $z_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{99}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{100}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{101}}$ = $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{102}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{103}}$ = $y_{8} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{104}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{105}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{106}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{107}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{108}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{109}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{110}}$ = $- z_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{111}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{112}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{113}}$ = $- y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{114}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{115}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{116}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (24h) Cd VIII
$\mathbf{B_{117}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{118}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{119}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{120}}$ = $x_{9} \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{121}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{122}}$ = $z_{9} \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{123}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{124}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{125}}$ = $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{126}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{127}}$ = $y_{9} \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{128}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{129}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{130}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{131}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{132}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{133}}$ = $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{134}}$ = $- z_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{135}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{136}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{137}}$ = $- y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{138}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{139}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{140}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (24h) Cd IX
$\mathbf{B_{141}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{142}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{143}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{144}}$ = $x_{10} \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{145}}$ = $z_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{146}}$ = $z_{10} \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{147}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{148}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{149}}$ = $y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{150}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{151}}$ = $y_{10} \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{152}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{153}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{154}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{155}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{156}}$ = $- x_{10} \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{157}}$ = $- z_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{158}}$ = $- z_{10} \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{159}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{160}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{161}}$ = $- y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{162}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{163}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{164}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (24h) Cd X
$\mathbf{B_{165}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{166}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{167}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{168}}$ = $x_{11} \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{169}}$ = $z_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{170}}$ = $z_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{171}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{172}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{173}}$ = $y_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{174}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{175}}$ = $y_{11} \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{176}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{177}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{178}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{179}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{180}}$ = $- x_{11} \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{181}}$ = $- z_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{182}}$ = $- z_{11} \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{183}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{184}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{185}}$ = $- y_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{186}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{187}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Ce I
$\mathbf{B_{188}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (24h) Ce I

References

  • M. Armbrüster and S. Lidin, Reassessing the compound CeCd$_{6}$: the structure of Ce$_{6}$Cd$_{37}$, J. Alloys Compd. 307, 141–148 (2000), doi:10.1016/S0925-8388(00)00881-1.
  • A. C. Larson and D. T. Cromer, The Crystal Structure of YCd$_{6}$, Acta Crystallogr. Sect. B 27, 1875–1879 (1971), doi:10.1107/S0567740871005028.

Found in

  • B. Skoƚyszewska-Kühberger, T. L. Reichmann, M. C. J. Marker, H. S. Effenberger, and H. Ipser, Re-investigation of the Cd-Ce Phase Diagram and Structural Characterization of the High-Temperature Phase Cd$_{17+2x}$Ce$_{2-x}$ ($x \sim 0.02$), J. Phase Equil. Diff. 37, 186–199 (2016), doi:10.1007/s11669-015-0441-z.

Prototype Generator

aflow --proto=A41B6_cP188_201_b2efg5h_h --params=$a,x_{2},x_{3},x_{4},x_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: