Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A41B11_cF416_216_7e2fg3h_egh-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1MZW
or https://aflow.org/p/A41B11_cF416_216_7e2fg3h_egh-001
or PDF Version

δ-Cu$_{41}$Sn$_{11}$ Structure: A41B11_cF416_216_7e2fg3h_egh-001

Picture of Structure; Click for Big Picture
Prototype Cu$_{41}$Sn$_{11}$
AFLOW prototype label A41B11_cF416_216_7e2fg3h_egh-001
ICSD none
Pearson symbol cF416
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A41B11_cF416_216_7e2fg3h_egh-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak z_{16}$

  • This is designated as the $\delta$ phase in the Cu-Sn system. (Massalski, 1990)
  • We have shifted the origin by $a (\hat{x} + \hat{y} + \hat{z})/4$ from that used by (Misra, 2021).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- 3 x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- 3 x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{4}}$ = $- 3 x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Cu II
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- 3 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Cu II
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}- 3 x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Cu II
$\mathbf{B_{8}}$ = $- 3 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Cu II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Cu III
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Cu III
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Cu III
$\mathbf{B_{12}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Cu III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Cu IV
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Cu IV
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Cu IV
$\mathbf{B_{16}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Cu IV
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Cu V
$\mathbf{B_{18}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Cu V
$\mathbf{B_{19}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Cu V
$\mathbf{B_{20}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Cu V
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Cu VI
$\mathbf{B_{22}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Cu VI
$\mathbf{B_{23}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Cu VI
$\mathbf{B_{24}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Cu VI
$\mathbf{B_{25}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Cu VII
$\mathbf{B_{26}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- 3 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Cu VII
$\mathbf{B_{27}}$ = $x_{7} \, \mathbf{a}_{1}- 3 x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Cu VII
$\mathbf{B_{28}}$ = $- 3 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Cu VII
$\mathbf{B_{29}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{30}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- 3 x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{31}}$ = $x_{8} \, \mathbf{a}_{1}- 3 x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{32}}$ = $- 3 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{33}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}$ (24f) Cu VIII
$\mathbf{B_{34}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}$ (24f) Cu VIII
$\mathbf{B_{35}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{y}}$ (24f) Cu VIII
$\mathbf{B_{36}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{y}}$ (24f) Cu VIII
$\mathbf{B_{37}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{z}}$ (24f) Cu VIII
$\mathbf{B_{38}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{z}}$ (24f) Cu VIII
$\mathbf{B_{39}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}$ (24f) Cu IX
$\mathbf{B_{40}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}$ (24f) Cu IX
$\mathbf{B_{41}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{y}}$ (24f) Cu IX
$\mathbf{B_{42}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{y}}$ (24f) Cu IX
$\mathbf{B_{43}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{z}}$ (24f) Cu IX
$\mathbf{B_{44}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{z}}$ (24f) Cu IX
$\mathbf{B_{45}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Cu X
$\mathbf{B_{46}}$ = $x_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Cu X
$\mathbf{B_{47}}$ = $x_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Cu X
$\mathbf{B_{48}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Cu X
$\mathbf{B_{49}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24g) Cu X
$\mathbf{B_{50}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Cu X
$\mathbf{B_{51}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{52}}$ = $x_{12} \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{53}}$ = $x_{12} \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{54}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{55}}$ = $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{56}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Sn II
$\mathbf{B_{57}}$ = $z_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{58}}$ = $z_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{59}}$ = $\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{60}}$ = $- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{61}}$ = $\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{62}}$ = $- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{63}}$ = $z_{13} \, \mathbf{a}_{1}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{64}}$ = $z_{13} \, \mathbf{a}_{1}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{65}}$ = $z_{13} \, \mathbf{a}_{1}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{66}}$ = $z_{13} \, \mathbf{a}_{1}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{67}}$ = $- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{68}}$ = $\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Cu XI
$\mathbf{B_{69}}$ = $z_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{70}}$ = $z_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{71}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{72}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{73}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{74}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{75}}$ = $z_{14} \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{76}}$ = $z_{14} \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{77}}$ = $z_{14} \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{78}}$ = $z_{14} \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{79}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{80}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Cu XII
$\mathbf{B_{81}}$ = $z_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+a z_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{82}}$ = $z_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+a z_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{83}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- a z_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{84}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- a z_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{85}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a z_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{86}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a z_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{87}}$ = $z_{15} \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a z_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{88}}$ = $z_{15} \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $- a z_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{89}}$ = $z_{15} \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a z_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{90}}$ = $z_{15} \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a z_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{91}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a z_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{92}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a z_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Cu XIII
$\mathbf{B_{93}}$ = $z_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+a z_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{94}}$ = $z_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+a z_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{95}}$ = $\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{1}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- a z_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{96}}$ = $- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{1}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- a z_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{97}}$ = $\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a z_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{98}}$ = $- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a z_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{99}}$ = $z_{16} \, \mathbf{a}_{1}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{2}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{3}$ = $- a z_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{100}}$ = $z_{16} \, \mathbf{a}_{1}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{2}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{3}$ = $- a z_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{101}}$ = $z_{16} \, \mathbf{a}_{1}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a z_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{102}}$ = $z_{16} \, \mathbf{a}_{1}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a z_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{103}}$ = $- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a z_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III
$\mathbf{B_{104}}$ = $\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a z_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Sn III

References

  • S. Misra, D. Pahari, S. Giri, F. Wang, S. Puravankara, and P. P. Jana, The γ-brass type Cu-rich complex intermetallic phase Cu$_{41}$Sn$_{11}$: Structure and electrochemical study, Solid State Sci. 119, 106682 (2021), doi:10.1016/j.solidstatesciences.2021.106682.
  • T. B. Massalski, H. Okamoto, P. R. S., and L. Kacprzak, eds., Binary Alloy Phase Diagrams} (ASM International, Materials Park, Ohio, USA, 1990), vol. 2, chap. Cu-Sn (Copper-Tin), pp. 1481–1483, 2$^{nd$ edn.
  • U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press, Boca Raton, London, New York, 2010).

Prototype Generator

aflow --proto=A41B11_cF416_216_7e2fg3h_egh --params=$a,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10},x_{11},x_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15},x_{16},z_{16}$

Species:

Running:

Output: