Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_tP16_130_cf_c

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

$\alpha$–WO3 Structure : A3B_tP16_130_cf_c

Picture of Structure; Click for Big Picture
Prototype : O3W
AFLOW prototype label : A3B_tP16_130_cf_c
Strukturbericht designation : None
Pearson symbol : tP16
Space group number : 130
Space group symbol : $P4/ncc$
AFLOW prototype command : aflow --proto=A3B_tP16_130_cf_c
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$



Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{O I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \text{O I} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{O I} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \text{O I} \\ \mathbf{B}_{5} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{W} \\ \mathbf{B}_{6} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \text{W} \\ \mathbf{B}_{7} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{W} \\ \mathbf{B}_{8} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \text{W} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{12} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \mathbf{B}_{16} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{O II} \\ \end{array} \]

References

  • P. M. Woodward, A. W. Sleight, and T. Vogt, Ferroelectric Tungsten Trioxide, J. Solid State Chem. 131, 9–17 (1997), doi:10.1006/jssc.1997.7268.
  • T. Vogt, P. M. Woodward, and B. A. Hunter, The High–Temperature Phases of WO3, J. Solid State Chem. 144, 209–215 (1999), doi:10.1006/jssc.1999.8173.
  • R. Diehl, G. Brandt, and E. Salje, The Crystal Structure of Triclinic WO3, Acta Crystallogr. Sect. B Struct. Sci. 34, 1105–1111 (1978), doi:10.1107/S0567740878005014.
  • H. Bräkken, Die Kristallstrukturen der Trioxyde von Chrom, Molybdän und Wolfram, Zeitschrift für Kristallographie – Crystalline Materials 78, 484–488 (1931), doi:10.1524/zkri.1931.78.1.484.
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem. 29, 429–434 (1979), doi:10.1016/0022-4596(79)90199-3.

Geometry files


Prototype Generator

aflow --proto=A3B_tP16_130_cf_c --params=

Species:

Running:

Output: