AFLOW Prototype: A3B_cP16_198_b_a-001
This structure originally had the label A3B_cP16_198_b_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/QTNQ
or
https://aflow.org/p/A3B_cP16_198_b_a-001
or
PDF Version
Prototype | H$_{3}$N |
AFLOW prototype label | A3B_cP16_198_b_a-001 |
Strukturbericht designation | $D0_{1}$ |
Mineral name | ammonia |
ICSD | 84461 |
Pearson symbol | cP16 |
Space group number | 198 |
Space group symbol | $P2_13$ |
AFLOW prototype command |
aflow --proto=A3B_cP16_198_b_a-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$ |
AsH$_{3}$, PH$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ | (4a) | N I |
$\mathbf{B_{2}}$ | = | $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4a) | N I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4a) | N I |
$\mathbf{B_{4}}$ | = | $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ | (4a) | N I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{6}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{8}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{9}}$ | = | $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{10}}$ | = | $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{11}}$ | = | $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{12}}$ | = | $- z_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{13}}$ | = | $y_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{14}}$ | = | $- y_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{15}}$ | = | $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (12b) | H I |
$\mathbf{B_{16}}$ | = | $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12b) | H I |