Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_cI32_204_g_c-001

This structure originally had the label A3B_cI32_204_g_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/9U6F
or https://aflow.org/p/A3B_cI32_204_g_c-001
or PDF Version

Skutterudite (CoAs$_{3}$, $D0_{2}$) Structure: A3B_cI32_204_g_c-001

Picture of Structure; Click for Big Picture
Prototype As$_{3}$Co
AFLOW prototype label A3B_cI32_204_g_c-001
Strukturbericht designation $D0_{2}$
Mineral name skutterudite
ICSD 9188
Pearson symbol cI32
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=A3B_cI32_204_g_c-001
--params=$a, \allowbreak y_{2}, \allowbreak z_{2}$

Other compounds with this structure

(Fe,  Ni)As$_{3}$,  IrAs$_{3}$,  RhAs$_{3}$,  CoP$_{3}$,  IrP$_{3}$,  NiP$_{3}$,  PdP$_{3}$,  CoSb$_{3}$,  IrSb$_{3}$,  RhSb$_{3}$


  • Useful skutterudites have iron and nickel alloyed with cobalt.
  • We have corrected the lattice constant for this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{5}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{6}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{7}}$ = $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{8}}$ = $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{9}}$ = $y_{2} \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{10}}$ = $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{11}}$ = $y_{2} \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{12}}$ = $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ (24g) As I
$\mathbf{B_{13}}$ = $z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ (24g) As I
$\mathbf{B_{14}}$ = $z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ (24g) As I
$\mathbf{B_{15}}$ = $- z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ (24g) As I
$\mathbf{B_{16}}$ = $- z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ (24g) As I

References

  • N. Mandel and J. Donohue, The refinement of the crystal structure of skutterudite, CoAs$_3$, Acta Crystallogr. Sect. B 27, 2288–2289 (1971), doi:10.1107/S0567740871005727.

Prototype Generator

aflow --proto=A3B_cI32_204_g_c --params=$a,y_{2},z_{2}$

Species:

Running:

Output: