Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BCD3E15F3_hP52_173_c_b_b_c_5c_c

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Crancrinite (Na6Ca2Al6Si6O24(CO3)2, $S3_{3}$ (I)) Structure : A3BCD3E15F3_hP52_173_c_b_b_c_5c_c

Picture of Structure; Click for Big Picture
Prototype : Al3CCaNa3O15Si3
AFLOW prototype label : A3BCD3E15F3_hP52_173_c_b_b_c_5c_c
Strukturbericht designation : $S3_{3}$ (I)
Pearson symbol : hP52
Space group number : 173
Space group symbol : $P6_{3}$
AFLOW prototype command : aflow --proto=A3BCD3E15F3_hP52_173_c_b_b_c_5c_c
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$


  • The term crancrinite covers a wide range of mineral compositions, some of which may include OH radicals and H2O molecules. We use this early determination of the structure as the base.
  • There are two major inconsistencies between (Kozu, 1933) and (Gottfried, 1937):
    • (Gottfried, 1937) interchanges the $z$ coordinates of the carbon and calcium ions compared to (Kozu, 1933). Kozu's coordinates are consistent with CO3 radicals, so we use their version.
    • (Kozu, 1933) gives $x_{10} = 0.33$ for the $x$ coordinate of silicon. This puts the silicon atoms very close to carbon. We follow (Gottfried, 1937) and take $x_{10} = 0.033$, which gives a reasonable distance.
  • (Gottfried, 1937) gave this structure the label $S3_{3}$, but later (Gottfried, 1938) gave the same label to parawollastonite, CaSiO3. We will refer to crancrinite as $S3_{3}$ $(I)$, and parawollastonite as $S3_{3}$ $(II)$.

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2b\right) & \text{C} \\ \mathbf{B}_{2} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \text{C} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \text{Ca} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \text{Ca} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Al} \\ \mathbf{B}_{6} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Al} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Al} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Al} \\ \mathbf{B}_{9} & = & y_{3} \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Al} \\ \mathbf{B}_{10} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Al} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Na} \\ \mathbf{B}_{12} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Na} \\ \mathbf{B}_{13} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Na} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Na} \\ \mathbf{B}_{15} & = & y_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Na} \\ \mathbf{B}_{16} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Na} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{18} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{19} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{20} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{21} & = & y_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{22} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{23} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{6}+y_{6}\right)a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{24} & = & -y_{6} \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{6}-y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{25} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}+\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{26} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{6}-y_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{27} & = & y_{6} \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{6}+y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{28} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(x_{6}-\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{29} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{7}+y_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{30} & = & -y_{7} \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{7}-y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{31} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}+\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{32} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{7}-y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{33} & = & y_{7} \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{7}+y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{34} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(x_{7}-\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{35} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{8}+y_{8}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{8}+y_{8}\right)a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O IV} \\ \mathbf{B}_{36} & = & -y_{8} \, \mathbf{a}_{1} + \left(x_{8}-y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{8}-y_{8}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O IV} \\ \mathbf{B}_{37} & = & \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}+\frac{1}{2}y_{8}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O IV} \\ \mathbf{B}_{38} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{8}+y_{8}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{8}-y_{8}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O IV} \\ \mathbf{B}_{39} & = & y_{8} \, \mathbf{a}_{1} + \left(-x_{8}+y_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{8}+y_{8}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O IV} \\ \mathbf{B}_{40} & = & \left(x_{8}-y_{8}\right) \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(x_{8}-\frac{1}{2}y_{8}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O IV} \\ \mathbf{B}_{41} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{9}+y_{9}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{9}+y_{9}\right)a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O V} \\ \mathbf{B}_{42} & = & -y_{9} \, \mathbf{a}_{1} + \left(x_{9}-y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{9}-y_{9}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O V} \\ \mathbf{B}_{43} & = & \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}+\frac{1}{2}y_{9}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{9}a \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O V} \\ \mathbf{B}_{44} & = & -x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{9}+y_{9}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{9}-y_{9}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O V} \\ \mathbf{B}_{45} & = & y_{9} \, \mathbf{a}_{1} + \left(-x_{9}+y_{9}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{9}+y_{9}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{9}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O V} \\ \mathbf{B}_{46} & = & \left(x_{9}-y_{9}\right) \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & \left(x_{9}-\frac{1}{2}y_{9}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{9}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O V} \\ \mathbf{B}_{47} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{10}+y_{10}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{10}+y_{10}\right)a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Si} \\ \mathbf{B}_{48} & = & -y_{10} \, \mathbf{a}_{1} + \left(x_{10}-y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{10}-y_{10}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Si} \\ \mathbf{B}_{49} & = & \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{1}-x_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}+\frac{1}{2}y_{10}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{10}a \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Si} \\ \mathbf{B}_{50} & = & -x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{10}+y_{10}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{10}-y_{10}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Si} \\ \mathbf{B}_{51} & = & y_{10} \, \mathbf{a}_{1} + \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{10}+y_{10}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{10}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Si} \\ \mathbf{B}_{52} & = & \left(x_{10}-y_{10}\right) \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & \left(x_{10}-\frac{1}{2}y_{10}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{10}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{Si} \\ \end{array} \]

References

  • S. Kôzu and K. Takané, Crystal Structure of Cancrinite from Dôdô, Korea (Part I), Proc. Imp. Acad. Japan 9, 56–59 (1933), doi:10.2183/pjab1912.9.56.
  • S. Kôzu and K. Takané, Crystal Structure of Cancrinite from Dôdô, Korea (Part II), Proc. Imp. Acad. Japan 9, 105–108 (1933), doi:10.2183/pjab1912.9.105.
  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Found in

  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=A3BCD3E15F3_hP52_173_c_b_b_c_5c_c --params=

Species:

Running:

Output: