Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B4C13_cI320_214_gh_abgh_e4i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1DPD
or https://aflow.org/p/A3B4C13_cI320_214_gh_abgh_e4i-001
or PDF Version

La$_{3}$Rh$_{4}$Sn$_{13}$ Structure: A3B4C13_cI320_214_gh_abgh_e4i-001

Picture of Structure; Click for Big Picture
Prototype La$_{3}$Rh$_{4}$Sn$_{13}$
AFLOW prototype label A3B4C13_cI320_214_gh_abgh_e4i-001
ICSD 54367
Pearson symbol cI320
Space group number 214
Space group symbol $I4_132$
AFLOW prototype command aflow --proto=A3B4C13_cI320_214_gh_abgh_e4i-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak y_{5}, \allowbreak y_{6}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

Other compounds with this structure

Ca$_{3}$Rh$_{4}$Sn$_{13}$,  Ce$_{3}$Rh$_{4}$Sn$_{13}$,  Gd$_{3}$Rh$_{4}$Sn$_{13}$,  Nd$_{3}$Rh$_{4}$Sn$_{13}$,  Pr$_{3}$Rh$_{4}$Sn$_{13}$,  Sm$_{3}$Rh$_{4}$Sn$_{13}$,  Tb$_{3}$Rh$_{4}$Sn$_{13}$,  Th$_{3}$Rh$_{4}$Sn$_{13}$,  Yb$_{3}$Rh$_{4}$Sn$_{13}$


  • (Bordet, 1991) refers to this as the phase I' structure of materials with the formula M$_{3}$Rh$_{4}$Sn$_{13}$, with the phase I structure represented by the centrosymmetric Yb$_{3}$Rh$_{4}$Sn$_{13}$ phase.
  • (Villars, 2016) calls this the high-temperature phase of La$_{3}$Rh$_{4}$Sn$_{13}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) Rh I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) Rh I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) Rh I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (8a) Rh I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (8b) Rh II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (8b) Rh II
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8b) Rh II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (8b) Rh II
$\mathbf{B_{9}}$ = $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{11}}$ = $- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{12}}$ = $- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{14}}$ = $- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{15}}$ = $2 x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{16}}$ = $2 x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{17}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{18}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{19}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{20}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{21}}$ = $\left(y_{4} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{22}}$ = $- \left(y_{4} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{23}}$ = $\left(y_{4} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{24}}$ = $- \left(y_{4} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{25}}$ = $\left(y_{4} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{26}}$ = $\left(y_{4} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{27}}$ = $- \left(y_{4} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{28}}$ = $- \left(y_{4} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) La I
$\mathbf{B_{29}}$ = $\left(2 y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{30}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{31}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{32}}$ = $- \left(2 y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{33}}$ = $\left(y_{5} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{34}}$ = $- \left(y_{5} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{35}}$ = $\left(y_{5} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{36}}$ = $- \left(y_{5} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{37}}$ = $\left(y_{5} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{38}}$ = $\left(y_{5} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{39}}$ = $- \left(y_{5} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{40}}$ = $- \left(y_{5} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Rh III
$\mathbf{B_{41}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{6} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{42}}$ = $- \left(2 y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{43}}$ = $\left(2 y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{44}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{6} + \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{45}}$ = $\left(y_{6} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{6} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{46}}$ = $- \left(y_{6} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{47}}$ = $\left(y_{6} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{48}}$ = $- \left(y_{6} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(y_{6} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{49}}$ = $- \left(y_{6} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{50}}$ = $- \left(y_{6} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{51}}$ = $\left(y_{6} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{52}}$ = $\left(y_{6} + \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) La II
$\mathbf{B_{53}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{7} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{54}}$ = $- \left(2 y_{7} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{55}}$ = $\left(2 y_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{56}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{7} + \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{57}}$ = $\left(y_{7} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{7} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{58}}$ = $- \left(y_{7} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{7} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{59}}$ = $\left(y_{7} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{7} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{60}}$ = $- \left(y_{7} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(y_{7} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{61}}$ = $- \left(y_{7} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{62}}$ = $- \left(y_{7} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{7} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{63}}$ = $\left(y_{7} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{7} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{64}}$ = $\left(y_{7} + \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) Rh IV
$\mathbf{B_{65}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{66}}$ = $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{67}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{68}}$ = $- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{69}}$ = $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{70}}$ = $- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{71}}$ = $\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{72}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{73}}$ = $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{74}}$ = $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{75}}$ = $- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{76}}$ = $\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{77}}$ = $\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{78}}$ = $- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{79}}$ = $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{80}}$ = $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{81}}$ = $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{82}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{83}}$ = $- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{84}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{85}}$ = $\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{86}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{87}}$ = $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{88}}$ = $- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn II
$\mathbf{B_{89}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{90}}$ = $\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{91}}$ = $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{92}}$ = $- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{93}}$ = $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{94}}$ = $- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{95}}$ = $\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{96}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{97}}$ = $\left(x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{98}}$ = $- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{99}}$ = $- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{100}}$ = $\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{101}}$ = $\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{102}}$ = $- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{103}}$ = $- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{104}}$ = $\left(x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{105}}$ = $\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{106}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{107}}$ = $- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{108}}$ = $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{109}}$ = $\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{110}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{111}}$ = $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{112}}$ = $- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn III
$\mathbf{B_{113}}$ = $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{114}}$ = $\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{115}}$ = $\left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{116}}$ = $- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{117}}$ = $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{118}}$ = $- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{119}}$ = $\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{120}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{121}}$ = $\left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{122}}$ = $- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{123}}$ = $- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{124}}$ = $\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{125}}$ = $\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{126}}$ = $- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{127}}$ = $- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{128}}$ = $\left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{129}}$ = $\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{130}}$ = $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{131}}$ = $- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{132}}$ = $\left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{133}}$ = $\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{134}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{135}}$ = $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{136}}$ = $- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn IV
$\mathbf{B_{137}}$ = $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{138}}$ = $\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{139}}$ = $\left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{140}}$ = $- \left(y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{141}}$ = $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{142}}$ = $- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{143}}$ = $\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{144}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{145}}$ = $\left(x_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{146}}$ = $- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{147}}$ = $- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{148}}$ = $\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{149}}$ = $\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{150}}$ = $- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{151}}$ = $- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{152}}$ = $\left(x_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{153}}$ = $\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{154}}$ = $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{155}}$ = $- \left(y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{156}}$ = $\left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{157}}$ = $\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{158}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{159}}$ = $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V
$\mathbf{B_{160}}$ = $- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48i) Sn V

References

  • P. Bordet, D. E. Cox, G. P. Espinosa, J. L. Hodeau, and M. Marezio, Synchrotron X-ray powder diffraction study of the phase I' compound: SnLa$_{3}$Rh$_{4}$Sn$_{12}$, Solid State Commun. 78, 359–366 (1991), doi:10.1016/0038-1098(91)90684-N.

Found in

  • P. Villars, La3Rh4Sn13 ht Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.

Prototype Generator

aflow --proto=A3B4C13_cI320_214_gh_abgh_e4i --params=$a,x_{3},y_{4},y_{5},y_{6},y_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: