Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B3C_cP14_223_c_d_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/FACW
or https://aflow.org/p/A3B3C_cP14_223_c_d_a-001
or PDF Version

SrB$_{3}$C$_{3}$ Clathrate Structure: A3B3C_cP14_223_c_d_a-001

Picture of Structure; Click for Big Picture
Prototype B$_{3}$C$_{3}$Sr
AFLOW prototype label A3B3C_cP14_223_c_d_a-001
CCDC 1949948
Pearson symbol cP14
Space group number 223
Space group symbol $Pm\overline{3}n$
AFLOW prototype command aflow --proto=A3B3C_cP14_223_c_d_a-001
--params=$a$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Sr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) Sr I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6c) B I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6c) B I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6d) C I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6d) C I
$\mathbf{B_{11}}$ = $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6d) C I
$\mathbf{B_{12}}$ = $\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6d) C I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6d) C I
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6d) C I

References

  • L. Zhu, G. M. Borstad, H. Liu, P. A. Guńka, M. Guerette, J.-A. Dolyniuk, Y. Meng, E. Greenberg, V. B. Prakapenka, B. L. Chaloux, A. Epshteyn, R. E. Cohen, and T. A. Strobel, Carbon-boron clathrates as a new class of sp$^3$-bonded framework materials, Sci. Adv. 6, eaay8361 (2020), doi:10.1126/sciadv.aay8361.

Found in

  • Z. Tan, H. Zhang, X. Wu, J. Xing, Q. Zhang, and J. Zhu, New High-Performance Piezoelectric: Ferroelectric Carbon-Boron Clathrate, Phys. Rev. Lett. 130, 246802 (2023), doi:10.1103/PhysRevLett.130.246802.

Prototype Generator

aflow --proto=A3B3C_cP14_223_c_d_a --params=$a$

Species:

Running:

Output: