Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2_cI40_220_d_c-001

This structure originally had the label A3B2_cI40_220_d_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/M1ZX
or https://aflow.org/p/A3B2_cI40_220_d_c-001
or PDF Version

Pu$_{2}$C$_{3}$ ($D5_{c}$) Structure: A3B2_cI40_220_d_c-001

Picture of Structure; Click for Big Picture
Prototype C$_{3}$Pu$_{2}$
AFLOW prototype label A3B2_cI40_220_d_c-001
Strukturbericht designation $D5_{c}$
ICSD 16511
Pearson symbol cI40
Space group number 220
Space group symbol $I\overline{4}3d$
AFLOW prototype command aflow --proto=A3B2_cI40_220_d_c-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}$

Other compounds with this structure

Am$_{2}$C$_{3}$,  Ce$_{2}$C$_{3}$,  Dy$_{2}$C$_{3}$,  Ho$_{2}$C$_{3}$,  Hf$_{2}$C$_{3}$,  La$_{2}$C$_{3}$,  Nd$_{2}$C$_{3}$,  Np$_{2}$C$_{3}$,  Pr$_{2}$C$_{3}$,  Pu$_{2}$C$_{3}$,  Sm$_{2}$C$_{3}$,  Th$_{2}$C$_{3}$,  U$_{2}$C$_{3}$,  Y$_{2}$C$_{3}$,  Cs$_{2}$O$_{3}$,  Ru$_{2}$Er$_{3}$,  Rb$_{2}$O$_{3}$,  Ru$_{2}$Y$_{3}$


  • We use the data for $^{240}$Pu.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+2 x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{3}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{4}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{5}}$ = $\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{7}}$ = $- 2 x_{1} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{8}}$ = $- 2 x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Pu I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{11}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (24d) C I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{13}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{14}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{15}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{16}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{17}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{18}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{19}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24d) C I
$\mathbf{B_{20}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24d) C I

References

  • J. L. Green, G. P. Arnold, J. A. Leary, and N. G. Nereson, Crystallographic and magnetic ordering studies of plutonium carbides using neutron diffraction, J. Nucl. Mater. 34, 281–289 (1970), doi:10.1016/0022-3115(70)90194-7.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=A3B2_cI40_220_d_c --params=$a,x_{1},x_{2}$

Species:

Running:

Output: