AFLOW Prototype: A3B2_cF80_227_f_e-002
This structure originally had the label A3B2_cF80_227_f_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/UHQ6
or
https://aflow.org/p/A3B2_cF80_227_f_e-002
or
PDF Version
Prototype | O$_{3}$Sb$_{2}$ |
AFLOW prototype label | A3B2_cF80_227_f_e-002 |
Strukturbericht designation | $D6_{1}$ |
Mineral name | senarmontite |
ICSD | 1944 |
Pearson symbol | cF80 |
Space group number | 227 |
Space group symbol | $Fd\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A3B2_cF80_227_f_e-002
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}$ |
As$_{2}$O$_{3}$ (arsenolite)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- \left(3 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{3}}$ | = | $x_{1} \, \mathbf{a}_{1}- \left(3 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{4}}$ | = | $- \left(3 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{5}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(3 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{6}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{7}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(3 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{8}}$ | = | $\left(3 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | Sb I |
$\mathbf{B_{9}}$ | = | $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{10}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{11}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{12}}$ | = | $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{13}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{14}}$ | = | $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{15}}$ | = | $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{16}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{17}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{18}}$ | = | $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{19}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (48f) | O I |
$\mathbf{B_{20}}$ | = | $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ | (48f) | O I |