Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2_cF80_227_f_e-002

This structure originally had the label A3B2_cF80_227_f_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/UHQ6
or https://aflow.org/p/A3B2_cF80_227_f_e-002
or PDF Version

Senarmontite (D6$_{1}$, Sb$_{2}$O$_{3}$) Structure: A3B2_cF80_227_f_e-002

Picture of Structure; Click for Big Picture
Prototype O$_{3}$Sb$_{2}$
AFLOW prototype label A3B2_cF80_227_f_e-002
Strukturbericht designation $D6_{1}$
Mineral name senarmontite
ICSD 1944
Pearson symbol cF80
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A3B2_cF80_227_f_e-002
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}$

Other compounds with this structure

As$_{2}$O$_{3}$ (arsenolite)


  • (Ewald, 1931) designated this as Strukturbericht $D6_{1}$, however (Parthé, 1993) and (Villars, 1991) label this as Strukturbericht $D5_{4}$, and Parthé uses As$_{2}$O$_{3}$ as the prototype. While this structure obviously fits better with the $D5$ series (A$_{2}$B$_{3}$) than $D6$ (A$_{2}$B$_{4}$), the $D5_{4}$ structure was (inadvertently?) omitted from (Hermann, 1937), which jumps from $D5_{3}$ to $D5_{5}$. We will follow this historical record (Ewald, 1931) here.
  • This is the cubic form of Sb$_{2}$O$_{3}$. For the orthorhombic form see the valentinite ($D5_{11}$) structure.
  • (Svensson, 1975) gave the atomic coordinates in setting 1 of space group $Fd\overline{3}m$ #227. We used FINDSYM to shift the coordinates to the standard setting 2.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- \left(3 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- \left(3 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{4}}$ = $- \left(3 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{5}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(3 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{6}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{7}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(3 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{8}}$ = $\left(3 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Sb I
$\mathbf{B_{9}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{10}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{11}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{13}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{14}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{15}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{16}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{17}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{18}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{19}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48f) O I
$\mathbf{B_{20}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (48f) O I

References

  • C. Svensson, Refinement of the crystal structure of cubic antimony trioxide, Sb$_{2}$O$_{3}$, Acta Crystallogr. Sect. B 31, 2016–2018 (1975), doi:10.1107/S0567740875006759.
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913-1928} (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • \bibitem{parthe93:TYPIXE. Parthé, L. Gelato, B. Chabot, M. Penso, K. Cenzula, and R. Gladyshevskii, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry}, vol. 2 (Springer-Verlag, Berlin, Heidelberg, 1993), 8 edn., doi:10.1007/978-3-662-02909-1_3.\bibAnnoteFile{parthe93:TYPIX
  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Prototype Generator

aflow --proto=A3B2_cF80_227_f_e --params=$a,x_{1},x_{2}$

Species:

Running:

Output: