Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_cI72_211_hi_i-001

This structure originally had the label A2B_cI72_211_hi_i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/NT1Y
or https://aflow.org/p/A2B_cI72_211_hi_i-001
or PDF Version

Hypothetical Cubic SiO$_{2}$ Structure: A2B_cI72_211_hi_i-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Si
AFLOW prototype label A2B_cI72_211_hi_i-001
ICSD 170506
Pearson symbol cI72
Space group number 211
Space group symbol $I432$
AFLOW prototype command aflow --proto=A2B_cI72_211_hi_i-001
--params=$a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}$

  • This is a hypothetical cubic structure for SiO$_{2}$. We use the data from the 1_158.cif file provided in the supplementary information of (Foster, 2004).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{y}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{y}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{3}}$ = $- y_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{y}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{4}}$ = $- 2 y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{y}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{5}}$ = $y_{1} \, \mathbf{a}_{1}+2 y_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{6}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{7}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{8}}$ = $- y_{1} \, \mathbf{a}_{1}- 2 y_{1} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{z}}$ (24h) O I
$\mathbf{B_{9}}$ = $y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+2 y_{1} \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}$ (24h) O I
$\mathbf{B_{10}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}$ = $- a y_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}$ (24h) O I
$\mathbf{B_{11}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ = $a y_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}$ (24h) O I
$\mathbf{B_{12}}$ = $- y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- 2 y_{1} \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}$ (24h) O I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{14}}$ = $- \left(2 y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{15}}$ = $\left(2 y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{17}}$ = $\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{18}}$ = $- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(2 y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{19}}$ = $\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(2 y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{20}}$ = $- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{21}}$ = $- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{22}}$ = $- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(2 y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{23}}$ = $\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(2 y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{24}}$ = $\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) O II
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{26}}$ = $- \left(2 y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{27}}$ = $\left(2 y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{29}}$ = $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{30}}$ = $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(2 y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{31}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(2 y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{32}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{33}}$ = $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{34}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(2 y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{35}}$ = $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(2 y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) Si I
$\mathbf{B_{36}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24i) Si I

References

  • M. D. Foster, O. D. Friedrichs, R. G. Bell, F. A. A. Paz, and J. Klinowski, Chemical Evaluation of Hypothetical Uninodal Zeolites, J. Am. Chem. Soc. 126, 9769–9775 (2004), doi:10.1021/ja037334j.

Prototype Generator

aflow --proto=A2B_cI72_211_hi_i --params=$a,y_{1},y_{2},y_{3}$

Species:

Running:

Output: