Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_cF96_227_abf_cd-001

This structure originally had the label A2B_cF96_227_abf_cd. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/UGWY
or https://aflow.org/p/A2B_cF96_227_abf_cd-001
or PDF Version

$D6_{2}$ (Sb$_{2}$O$_{4}$, Obsolete) Structure: A2B_cF96_227_abf_cd-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Sb
AFLOW prototype label A2B_cF96_227_abf_cd-001
Strukturbericht designation $D6_{2}$
ICSD 24244
Pearson symbol cF96
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A2B_cF96_227_abf_cd-001
--params=$a, \allowbreak x_{5}$

  • Shortly after (Gottfried, 1937) gave this compound the Strukturbericht designation $D6_{2}$, (Dihiström, 1937) showed that they were actually determining the structure of Sb$_{3}$O$_{6}$OH, making this structure obsolete. Indeed, (Herrman, 1943) formally withdraws this from the Strukturbericht list, saying The type and description [in (Gottfried, 1937)] should be deleted, as the radiographs were not based on the supposed substance. We present it for its historical interest.
  • Modern experiments have determined that SbO$_{2}$ appears as cervantite ($\alpha$–Sb$_{2}$O$_{4}$) or clinocervantite ($\beta$–Sb$_{2}$O$_{4}$).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) O I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (8a) O I
$\mathbf{B_{3}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (8b) O II
$\mathbf{B_{4}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (8b) O II
$\mathbf{B_{5}}$ = $0$ = $0$ (16c) Sb I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (16c) Sb I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Sb I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Sb I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Sb II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Sb II
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Sb II
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Sb II
$\mathbf{B_{13}}$ = $- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{14}}$ = $x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{16}}$ = $- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{18}}$ = $- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{19}}$ = $\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{20}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{21}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{22}}$ = $\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{23}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (48f) O III
$\mathbf{B_{24}}$ = $\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (48f) O III

References

  • G. Natta and M. Baccaredda, Tetrossido di antimonio e antimoniati, Z. Kristallogr. 85, 271–296 (1933), doi:10.1524/zkri.1933.85.1.271.
  • K. Dihlström and A. Westgren, Über den Bau des sogenannten Antimontetroxyds und der damit isomorphen Verbindung BiTa$_{2}$O$_{6}$F, Z. Anorganische und Allgemeine Chemie 235, 153–160 (1937), doi:10.1002/zaac.19372350121.
  • K. Herrmann, ed., Strukturbericht Band VII 1939 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1943).

Found in

  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Prototype Generator

aflow --proto=A2B_cF96_227_abf_cd --params=$a,x_{5}$

Species:

Running:

Output: