Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC3_cP24_213_c_a_d-001

This structure originally had the label A2BC3_cP24_213_c_a_d. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/SRH0
or https://aflow.org/p/A2BC3_cP24_213_c_a_d-001
or PDF Version

Al$_{2}$Mo$_{3}$C Structure: A2BC3_cP24_213_c_a_d-001

Picture of Structure; Click for Big Picture
Prototype Al$_{2}$CMo$_{3}$
AFLOW prototype label A2BC3_cP24_213_c_a_d-001
ICSD 42917
Pearson symbol cP24
Space group number 213
Space group symbol $P4_132$
AFLOW prototype command aflow --proto=A2BC3_cP24_213_c_a_d-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{3}$

Other compounds with this structure

Ag$_{2}$Pd$_{3}$Sn,  Al$_{2}$Nb$_{3}$C,  Al$_{2}$Nb$_{3}$N,  Al$_{2}$Ta$_{3}$C,  Cr$_{2}$Re$_{3}$B,  Li$_{2}$Pd$_{3}$B,  Li$_{2}$Pt$_{3}$B,  Mn$_{2}$Rh$_{3}$P,  Ni$_{2}$W$_{3}$N,  Re$_{2}$W$_{3}$C,  Rh$_{2}$Mo$_{3}$N,  (Fe$_{2-x}$Rh$_{x}$)Mo$_{3}$N


  • This is a filled $\beta$–Mn (A13) structure, with the aluminum and molybdenum atoms almost exactly on the sites of the manganese atoms in A13.
  • This structure may also be found in the enantiomorphic space group $P4_{3}32$ #212.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (4a) C I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (4a) C I
$\mathbf{B_{3}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (4a) C I
$\mathbf{B_{4}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (4a) C I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{9}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{10}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{13}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{14}}$ = $\frac{3}{8} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{15}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{16}}$ = $\frac{5}{8} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{17}}$ = $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{18}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{19}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{20}}$ = $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{21}}$ = $y_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{22}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{23}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (12d) Mo I
$\mathbf{B_{24}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (12d) Mo I

References

  • W. Jeitschko, H. Nowotny, and F. Benesovsky, Ein Beitrag zum Dreistoff: Molybdän-Aluminium-Kohlenstoff, Mh. Chem. 94, 247–251 (1963), doi:10.1007/BF00900244.

Found in

  • J. Johnston, L. Toth, K. Kennedy, and E. R. Parker, Superconductivity of Mo$_{3}$Al$_{2}$C, Solid State Commun. 2, 123 (1964), doi:10.1016/0038-1098(64)90251-0.

Prototype Generator

aflow --proto=A2BC3_cP24_213_c_a_d --params=$a,x_{2},y_{3}$

Species:

Running:

Output: