Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_cP60_212_acd_bce-001

This structure originally had the label A2B3_cP60_212_bcd_ace. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/J7V3
or https://aflow.org/p/A2B3_cP60_212_acd_bce-001
or PDF Version

γ-Fe$_{2}$O$_{3}$ ($D5_{7}$) Structure: A2B3_cP60_212_acd_bce-001

Picture of Structure; Click for Big Picture
Prototype Fe$_{2}$O$_{3}$
AFLOW prototype label A2B3_cP60_212_acd_bce-001
Strukturbericht designation $D5_{7}$
ICSD none
Pearson symbol cP60
Space group number 212
Space group symbol $P4_332$
AFLOW prototype command aflow --proto=A2B3_cP60_212_acd_bce-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$

Other compounds with this structure

$\gamma$-Al$_{2}$O$_{3}$ ($\gamma$-corundum)


  • (Hermann, 1937) gives $\gamma$–Al$_{2}$O$_{3}$ as the prototype for Strukturbericht $D5_{7}$, but states that the data for $\gamma$–Fe$_{2}$O$_{3}$ is more reliable and presents the data for the later compound, which we use as the prototype.
  • More information about the Al$_{2}$O$_{3}$ compounds can be found on the corundum ($D5_{1}$) page.
  • This is a rock-salt ($B1$) structure with defects.
  • This structure can also be expressed in the enantiomorphic space group $P4_{1}32$ #213.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (4a) Fe I
$\mathbf{B_{2}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (4a) Fe I
$\mathbf{B_{3}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (4a) Fe I
$\mathbf{B_{4}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (4a) Fe I
$\mathbf{B_{5}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{6}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{7}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{8}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{10}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{13}}$ = $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{14}}$ = $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{15}}$ = $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{16}}$ = $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Fe II
$\mathbf{B_{17}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{18}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{20}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{21}}$ = $\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{22}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{23}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{24}}$ = $- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{25}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{26}}$ = $\frac{3}{8} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{27}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{28}}$ = $\frac{5}{8} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{29}}$ = $- \left(y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{30}}$ = $- \left(y_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{31}}$ = $\left(y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{32}}$ = $\left(y_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{33}}$ = $y_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{34}}$ = $- y_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{35}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{36}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (12d) Fe III
$\mathbf{B_{37}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{38}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{39}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{40}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{41}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{42}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{43}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{44}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{45}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{46}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{47}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{48}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{49}}$ = $\left(y_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{50}}$ = $- \left(y_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{51}}$ = $\left(y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{52}}$ = $- \left(y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{53}}$ = $\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{54}}$ = $- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{55}}$ = $- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{56}}$ = $\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{57}}$ = $\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{58}}$ = $\left(z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{59}}$ = $- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III
$\mathbf{B_{60}}$ = $- \left(z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24e) O III

References

Found in

  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Prototype Generator

aflow --proto=A2B3_cP60_212_acd_bce --params=$a,x_{3},x_{4},y_{5},x_{6},y_{6},z_{6}$

Species:

Running:

Output: