Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B2C12D3_cP76_198_2a_2a_4b_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/98LD
or https://aflow.org/p/A2B2C12D3_cP76_198_2a_2a_4b_b-001
or PDF Version

Langbeinite [K$_{2}$Mg$_{2}$(SO$_{4}$)$_{3}$] Structure: A2B2C12D3_cP76_198_2a_2a_4b_b-001

Picture of Structure; Click for Big Picture
Prototype K$_{2}$Mg$_{2}$O$_{12}$S$_{3}$
AFLOW prototype label A2B2C12D3_cP76_198_2a_2a_4b_b-001
Mineral name langbeinite
ICSD 100420
Pearson symbol cP76
Space group number 198
Space group symbol $P2_13$
AFLOW prototype command aflow --proto=A2B2C12D3_cP76_198_2a_2a_4b_b-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}$

Other compounds with this structure

K$_{2}$Ca$_{2}$(SO$_{4}$)$_{3}$),  K$_{2}$Fe$_{2}$(SO$_{4}$)$_{3}$),  K$_{2}$Mn$_{2}$(SO$_{4}$)$_{3}$),  (NH$_{4}$)$_{2}$Mg$_{2}$(SO$_{4}$)$_{3}$)


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (4a) K I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) K I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) K I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (4a) K I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (4a) K II
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) K II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) K II
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (4a) K II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (4a) Mg I
$\mathbf{B_{10}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Mg I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Mg I
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (4a) Mg I
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (4a) Mg II
$\mathbf{B_{14}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Mg II
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Mg II
$\mathbf{B_{16}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (4a) Mg II
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{18}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{20}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{21}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{22}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{23}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{24}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{25}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{26}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{27}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{28}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O I
$\mathbf{B_{29}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{30}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{31}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{32}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{33}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{34}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{35}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{36}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{37}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{38}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{39}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{40}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O II
$\mathbf{B_{41}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{42}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{43}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{44}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{45}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{46}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{47}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{48}}$ = $- z_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{49}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{50}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{51}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{52}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O III
$\mathbf{B_{53}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{54}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{55}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{56}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{57}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{58}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{59}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{60}}$ = $- z_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{61}}$ = $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{62}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{63}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{64}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) O IV
$\mathbf{B_{65}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{66}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{67}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{68}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{69}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{70}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{71}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{72}}$ = $- z_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{73}}$ = $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{74}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{75}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (12b) S I
$\mathbf{B_{76}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12b) S I

References

  • K. Mereiter, Refinement of the crystal structure of langbeinite, K$_{2}$Mg$_{2}$(SO$_{4}$)$_{3}$, Neues Jahrb. für Mineral. Monatshefte pp. 182–188 (1979).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).
  • F. Hoffmann, The Fascination of Crystals and Symmetry (2015). 230 – The Space Group List Project.

Prototype Generator

aflow --proto=A2B2C12D3_cP76_198_2a_2a_4b_b --params=$a,x_{1},x_{2},x_{3},x_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9}$

Species:

Running:

Output: