AFLOW Prototype: A24BC_cF104_209_j_a_b-001
This structure originally had the label A24BC_cF104_209_j_a_b. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/XBGM
or
https://aflow.org/p/A24BC_cF104_209_j_a_b-001
or
PDF Version
Prototype | F$_{6}$KP |
AFLOW prototype label | A24BC_cF104_209_j_a_b-001 |
ICSD | none |
Pearson symbol | cF104 |
Space group number | 209 |
Space group symbol | $F432$ |
AFLOW prototype command |
aflow --proto=A24BC_cF104_209_j_a_b-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | K I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | P I |
$\mathbf{B_{3}}$ | = | $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{4}}$ | = | $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{5}}$ | = | $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{6}}$ | = | $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{7}}$ | = | $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{8}}$ | = | $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{9}}$ | = | $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{10}}$ | = | $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{11}}$ | = | $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{12}}$ | = | $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{13}}$ | = | $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{14}}$ | = | $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{15}}$ | = | $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{16}}$ | = | $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{17}}$ | = | $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{18}}$ | = | $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{19}}$ | = | $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{20}}$ | = | $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{21}}$ | = | $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{22}}$ | = | $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{23}}$ | = | $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{24}}$ | = | $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{25}}$ | = | $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |
$\mathbf{B_{26}}$ | = | $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (96j) | F I |