Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A24BC_cF104_209_j_a_b-001

This structure originally had the label A24BC_cF104_209_j_a_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/XBGM
or https://aflow.org/p/A24BC_cF104_209_j_a_b-001
or PDF Version

KPF$_{6}$ Structure: A24BC_cF104_209_j_a_b-001

Picture of Structure; Click for Big Picture
Prototype F$_{6}$KP
AFLOW prototype label A24BC_cF104_209_j_a_b-001
ICSD none
Pearson symbol cF104
Space group number 209
Space group symbol $F432$
AFLOW prototype command aflow --proto=A24BC_cF104_209_j_a_b-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • The (96j) Wyckoff positions are decorated by F atoms with a site occupation of 0.25, hence the prototype material is KPF$_{6}$ rather than KPF$_{24}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) K I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) P I
$\mathbf{B_{3}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{4}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{5}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{6}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{7}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{8}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{9}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{10}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{11}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{12}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{13}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{14}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{15}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{16}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{17}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{18}}$ = $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{19}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{20}}$ = $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{21}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{22}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{23}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{24}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{25}}$ = $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96j) F I
$\mathbf{B_{26}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96j) F I

References

  • Y. P. Mascarenhas and S. H. Pulcinelli, A redetermination of the structure of α-potassium fluorophosphate, Acta Cryst. 37, C175 (1981), doi:10.1107/S0108767381094294.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A24BC_cF104_209_j_a_b --params=$a,x_{3},y_{3},z_{3}$

Species:

Running:

Output: