Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A22B_cF184_227_cdfg_a-001

This structure originally had the label A22B_cF184_227_cdfg_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/MX6R
or https://aflow.org/p/A22B_cF184_227_cdfg_a-001
or PDF Version

Zn$_{22}$Zr Structure: A22B_cF184_227_cdfg_a-001

Picture of Structure; Click for Big Picture
Prototype Zn$_{22}$Zr
AFLOW prototype label A22B_cF184_227_cdfg_a-001
ICSD 106238
Pearson symbol cF184
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A22B_cF184_227_cdfg_a-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

Be$_{22}$Mo,  Be$_{22}$Re,  Be$_{22}$W,  Al$_{18}$Cr$_{2}$Mg$_{3}$,  Ce(TiAl$_{10}$)$_{2}$,  Dy(RhZn$_{10}$)$_{2}$,  U(VAl$_{10}$)$_{2}$,  Y(RuZn$_{10}$)$_{2}$


  • (Samson, 1961) gives the atomic coordinates in terms of setting 1 of space group $F4dm$ #227. We have shifted this to the standard setting 2, where the inversion site of the lattice is at the origin.
  • Samson also suggests that the Zn$_{14}$Zr structure is created when zirconium atoms replace some of the zinc atoms on the (16c) site [the (16d) site in Samson's orientation].
  • This structure can be derived from the Mg$_{3}$Cr$_{2}$Al$_{18}$ structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) Zr I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (8a) Zr I
$\mathbf{B_{3}}$ = $0$ = $0$ (16c) Zn I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (16c) Zn I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Zn I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Zn I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Zn II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Zn II
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Zn II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Zn II
$\mathbf{B_{11}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{14}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{16}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{17}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{20}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{21}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{22}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (48f) Zn III
$\mathbf{B_{23}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{24}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{25}}$ = $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{26}}$ = $- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{27}}$ = $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{28}}$ = $- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{29}}$ = $z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{30}}$ = $z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{31}}$ = $z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{32}}$ = $z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{33}}$ = $- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{34}}$ = $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{35}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{36}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{37}}$ = $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{38}}$ = $\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{39}}$ = $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{40}}$ = $\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{41}}$ = $- z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{42}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{43}}$ = $- z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{44}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{45}}$ = $\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Zn IV
$\mathbf{B_{46}}$ = $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96g) Zn IV

References

Found in

  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams}, vol. 3 (ASM International, Materials Park, Ohio, USA, 1990), 2$^{nd$ edn. Hf-Re to Zn-Zr.

Prototype Generator

aflow --proto=A22B_cF184_227_cdfg_a --params=$a,x_{4},x_{5},z_{5}$

Species:

Running:

Output: