Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A22B5_cF432_196_abcd6efg4h_2efg-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/GA7M
or https://aflow.org/p/A22B5_cF432_196_abcd6efg4h_2efg-001
or PDF Version

Li$_{22}$Si$_{5}$ Structure: A22B5_cF432_196_abcd6efg4h_2efg-001

Picture of Structure; Click for Big Picture
Prototype Li$_{22}$Si$_{5}$
AFLOW prototype label A22B5_cF432_196_abcd6efg4h_2efg-001
ICSD 24596
Pearson symbol cF432
Space group number 196
Space group symbol $F23$
AFLOW prototype command aflow --proto=A22B5_cF432_196_abcd6efg4h_2efg-001
--params=$a, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak x_{13}, \allowbreak x_{14}, \allowbreak x_{15}, \allowbreak x_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}$

Other compounds with this structure

Li$_{22}$Ge$_{5}$,  Li$_{22}$Pb$_{5}$,  Li$_{22}$Sn$_{5}$,  Li$_{22}$Tl$_{5}$


  • The ICSD and other authorities use Li$_{22}$Pb$_{5}$ as the prototype for this structure, but (Goward, 2001) suggests that the true structure of that compound is Li$_{17}$Pb$_{4}$, changing the space group from $F32$ #196 to $F\overline{4}3m$ Li$_{22}$Si$_{5}$ as the prototype.
  • This is one of the few crystal structures where all of the Wyckoff positions in its space group are occupied.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Li I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Li II
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) Li III
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (4d) Li IV
$\mathbf{B_{5}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{6}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{8}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{9}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{12}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{14}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- 3 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{15}}$ = $x_{7} \, \mathbf{a}_{1}- 3 x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{16}}$ = $- 3 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{17}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{18}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- 3 x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{19}}$ = $x_{8} \, \mathbf{a}_{1}- 3 x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{20}}$ = $- 3 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{21}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{22}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- 3 x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{23}}$ = $x_{9} \, \mathbf{a}_{1}- 3 x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{24}}$ = $- 3 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{25}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{26}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- 3 x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{27}}$ = $x_{10} \, \mathbf{a}_{1}- 3 x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{28}}$ = $- 3 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{29}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (16e) Si I
$\mathbf{B_{30}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- 3 x_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (16e) Si I
$\mathbf{B_{31}}$ = $x_{11} \, \mathbf{a}_{1}- 3 x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (16e) Si I
$\mathbf{B_{32}}$ = $- 3 x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (16e) Si I
$\mathbf{B_{33}}$ = $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{34}}$ = $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- 3 x_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{35}}$ = $x_{12} \, \mathbf{a}_{1}- 3 x_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{36}}$ = $- 3 x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{37}}$ = $- x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}$ (24f) Li XI
$\mathbf{B_{38}}$ = $x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}$ (24f) Li XI
$\mathbf{B_{39}}$ = $x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{y}}$ (24f) Li XI
$\mathbf{B_{40}}$ = $- x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{y}}$ (24f) Li XI
$\mathbf{B_{41}}$ = $x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{z}}$ (24f) Li XI
$\mathbf{B_{42}}$ = $- x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{z}}$ (24f) Li XI
$\mathbf{B_{43}}$ = $- x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+x_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}$ (24f) Si III
$\mathbf{B_{44}}$ = $x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- x_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}$ (24f) Si III
$\mathbf{B_{45}}$ = $x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+x_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{y}}$ (24f) Si III
$\mathbf{B_{46}}$ = $- x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- x_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{y}}$ (24f) Si III
$\mathbf{B_{47}}$ = $x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- x_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{z}}$ (24f) Si III
$\mathbf{B_{48}}$ = $- x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+x_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{z}}$ (24f) Si III
$\mathbf{B_{49}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+x_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li XII
$\mathbf{B_{50}}$ = $x_{15} \, \mathbf{a}_{1}- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li XII
$\mathbf{B_{51}}$ = $x_{15} \, \mathbf{a}_{1}- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{15} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li XII
$\mathbf{B_{52}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li XII
$\mathbf{B_{53}}$ = $x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (24g) Li XII
$\mathbf{B_{54}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{15} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Li XII
$\mathbf{B_{55}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+x_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Si IV
$\mathbf{B_{56}}$ = $x_{16} \, \mathbf{a}_{1}- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Si IV
$\mathbf{B_{57}}$ = $x_{16} \, \mathbf{a}_{1}- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{16} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Si IV
$\mathbf{B_{58}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Si IV
$\mathbf{B_{59}}$ = $x_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (24g) Si IV
$\mathbf{B_{60}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{16} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Si IV
$\mathbf{B_{61}}$ = $\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{62}}$ = $\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{2}- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{63}}$ = $\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}- a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{64}}$ = $- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}- a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{65}}$ = $\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{1}+\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $a z_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}+a y_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{66}}$ = $- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $a z_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- a y_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{67}}$ = $\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{2}- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a z_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}+a y_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{68}}$ = $\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{3}$ = $- a z_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- a y_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{69}}$ = $\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{2}+\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}+a z_{17} \,\mathbf{\hat{y}}+a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{70}}$ = $\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+a z_{17} \,\mathbf{\hat{y}}- a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{71}}$ = $- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(- x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- a z_{17} \,\mathbf{\hat{y}}- a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{72}}$ = $\left(x_{17} + y_{17} - z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} - y_{17} + z_{17}\right) \, \mathbf{a}_{2}- \left(x_{17} + y_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}- a z_{17} \,\mathbf{\hat{y}}+a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{73}}$ = $\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}+a z_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{74}}$ = $\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{2}- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}+a z_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{75}}$ = $\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}- a z_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{76}}$ = $- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}- a z_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{77}}$ = $\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{1}+\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $a z_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}+a y_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{78}}$ = $- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $a z_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- a y_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{79}}$ = $\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{2}- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $- a z_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}+a y_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{80}}$ = $\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{3}$ = $- a z_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- a y_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{81}}$ = $\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{2}+\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}+a z_{18} \,\mathbf{\hat{y}}+a x_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{82}}$ = $\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}+a z_{18} \,\mathbf{\hat{y}}- a x_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{83}}$ = $- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(- x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}- a z_{18} \,\mathbf{\hat{y}}- a x_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{84}}$ = $\left(x_{18} + y_{18} - z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} - y_{18} + z_{18}\right) \, \mathbf{a}_{2}- \left(x_{18} + y_{18} + z_{18}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}- a z_{18} \,\mathbf{\hat{y}}+a x_{18} \,\mathbf{\hat{z}}$ (48h) Li XIV
$\mathbf{B_{85}}$ = $\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}+a z_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{86}}$ = $\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{2}- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}+a z_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{87}}$ = $\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}- a z_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{88}}$ = $- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{2}+\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}- a z_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{89}}$ = $\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{1}+\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $a z_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}+a y_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{90}}$ = $- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $a z_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- a y_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{91}}$ = $\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{2}- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $- a z_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}+a y_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{92}}$ = $\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{3}$ = $- a z_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- a y_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{93}}$ = $\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{2}+\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}+a z_{19} \,\mathbf{\hat{y}}+a x_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{94}}$ = $\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}+a z_{19} \,\mathbf{\hat{y}}- a x_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{95}}$ = $- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{1}+\left(- x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{2}+\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}- a z_{19} \,\mathbf{\hat{y}}- a x_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{96}}$ = $\left(x_{19} + y_{19} - z_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} - y_{19} + z_{19}\right) \, \mathbf{a}_{2}- \left(x_{19} + y_{19} + z_{19}\right) \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}- a z_{19} \,\mathbf{\hat{y}}+a x_{19} \,\mathbf{\hat{z}}$ (48h) Li XV
$\mathbf{B_{97}}$ = $\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}+a z_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{98}}$ = $\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{2}- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}+a z_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{99}}$ = $\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}- a z_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{100}}$ = $- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{2}+\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}- a z_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{101}}$ = $\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{1}+\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $a z_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}+a y_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{102}}$ = $- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $a z_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- a y_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{103}}$ = $\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{2}- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $- a z_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}+a y_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{104}}$ = $\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{3}$ = $- a z_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- a y_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{105}}$ = $\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{2}+\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}+a z_{20} \,\mathbf{\hat{y}}+a x_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{106}}$ = $\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}+a z_{20} \,\mathbf{\hat{y}}- a x_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{107}}$ = $- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{1}+\left(- x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{2}+\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}- a z_{20} \,\mathbf{\hat{y}}- a x_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI
$\mathbf{B_{108}}$ = $\left(x_{20} + y_{20} - z_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} - y_{20} + z_{20}\right) \, \mathbf{a}_{2}- \left(x_{20} + y_{20} + z_{20}\right) \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}- a z_{20} \,\mathbf{\hat{y}}+a x_{20} \,\mathbf{\hat{z}}$ (48h) Li XVI

References

  • H. Axel, H. Schäfer, and A. Weiss, Zur Kenntnis der Phase Li$_{22}$Si$_{5}$, Z. Naturforsch. B 21, 115–117 (1966), doi:10.1515/znb-1966-0204.
  • A. Zalkin and W. J. Ramsey, Intermetallic compounds between lithium and lead. IV. The crystal structure of Li$_{22}$Pb$_{5}$, J. Physic. Chem. 62, 689–693 (1958), doi:10.1021/j150564a013.
  • G. R. Goward, N. J. Taylor, D. C. S. Souza, and L. F. Nazar, The true crystal structure of Li$_{17}$M$_{4}$ (M=Ge, Sn, Pb)-revised from Li$_{22}$M$_{5}$, J. Alloys Compd. 329, 82–91 (2001), doi:10.1016/S0925-8388(01)01567-5.

Found in

  • Inorganic Crystal Structure Database}. Entry 24596 (Li$_{22}$Si$_{5$).

Prototype Generator

aflow --proto=A22B5_cF432_196_abcd6efg4h_2efg --params=$a,x_{5},x_{6},x_{7},x_{8},x_{9},x_{10},x_{11},x_{12},x_{13},x_{14},x_{15},x_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20}$

Species:

Running:

Output: