Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A21B_cI44_229_bdh_a-001

This structure originally had the label A21B_cI44_229_bdh_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/QV5K
or https://aflow.org/p/A21B_cI44_229_bdh_a-001
or PDF Version

α-AgI ($B23$) Structure: A21B_cI44_229_bdh_a-001

Picture of Structure; Click for Big Picture
Prototype AgI
AFLOW prototype label A21B_cI44_229_bdh_a-001
Strukturbericht designation $B23$
ICSD 33262
Pearson symbol cI44
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=A21B_cI44_229_bdh_a-001
--params=$a, \allowbreak y_{4}$

Other compounds with this structure

Ag$_{2}$S,  Ag$_{2}$Se


  • Under ambient conditions, silver iodide exists as a mixture of $\beta$–AgI, which has the wurtzite ($B4$) structure, and $\gamma$–AgI, which has the zincblende ($B3$) structure (Hull, 2004). Above 420K AgI transforms to this superionic $\alpha$ phase. The iodine atom sits at the (2a) site of the bcc lattice of space group $Im\overline{3}m$ #229, while the silver atom is randomly distributed on one of the (6b), (12d), and (24h) Wyckoff sites in each unit cell. On average, then, each of the 21 Ag sites listed below is occupied only 4.762% of the time in any given primitive cell. This easy transport between sites drives the superionic behavior of $\alpha$–AgI. Ag$_{2}$S and Ag$_{2}$Se have higher concentrations of silver on each site.
  • There is no ICSD entry for (Strock, 1934), so we use that from (Rahlfs, 1936). The two are identical except for the lattice constant (a = 5.034Å for Strock, 4.88Å for Rahlfs.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) I I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6b) Ag I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Ag I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Ag I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12d) Ag II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (12d) Ag II
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (12d) Ag II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12d) Ag II
$\mathbf{B_{9}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12d) Ag II
$\mathbf{B_{10}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12d) Ag II
$\mathbf{B_{11}}$ = $2 y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{12}}$ = $y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{13}}$ = $- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{14}}$ = $- 2 y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{15}}$ = $y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{17}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{18}}$ = $- y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24h) Ag III
$\mathbf{B_{19}}$ = $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+2 y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (24h) Ag III
$\mathbf{B_{20}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (24h) Ag III
$\mathbf{B_{21}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (24h) Ag III
$\mathbf{B_{22}}$ = $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- 2 y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (24h) Ag III

References

  • L. W. Strock, Kristallstruktur des Hochtemperatur-Jodsilbers α-AgJ, Z. Physik. Chem. B 25, 441–459 (1934), doi:10.1515/zpch-1934-2535.
  • P. Rahlfs, Über die kubischen Hochtemperaturmodifikationen der Sulfide, Selenide und Telluride des Silbers und des einwertigen Kupfers, Z. Physik. Chem. B 31, 157–194 (1936), doi:10.1515/zpch-1936-3114.
  • S. Hull, Superionics: crystal structures and conduction processes, Rep. Prog. Phys. 67, 1233–1314 (2004), doi:10.1088/0034-4885/67/7/R05.

Found in

  • S. Hoshino, Crystal Structure and Phase Transition of Some Metallic Halides IV On the Anomalous Structure of $\alpha$-AgI, J. Phys. Soc. Japan 12, 315–326 (1957), doi:10.1143/JPSJ.12.315.

Prototype Generator

aflow --proto=A21B_cI44_229_bdh_a --params=$a,y_{4}$

Species:

Running:

Output: