AFLOW Prototype: A21B_cI44_229_bdh_a-001
This structure originally had the label A21B_cI44_229_bdh_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/QV5K
or
https://aflow.org/p/A21B_cI44_229_bdh_a-001
or
PDF Version
Prototype | AgI |
AFLOW prototype label | A21B_cI44_229_bdh_a-001 |
Strukturbericht designation | $B23$ |
ICSD | 33262 |
Pearson symbol | cI44 |
Space group number | 229 |
Space group symbol | $Im\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A21B_cI44_229_bdh_a-001
--params=$a, \allowbreak y_{4}$ |
Ag$_{2}$S, Ag$_{2}$Se
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | I I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (6b) | Ag I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (6b) | Ag I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6b) | Ag I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12d) | Ag II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (12d) | Ag II |
$\mathbf{B_{7}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (12d) | Ag II |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12d) | Ag II |
$\mathbf{B_{9}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12d) | Ag II |
$\mathbf{B_{10}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12d) | Ag II |
$\mathbf{B_{11}}$ | = | $2 y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{12}}$ | = | $y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{13}}$ | = | $- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{14}}$ | = | $- 2 y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{15}}$ | = | $y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{16}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{17}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{18}}$ | = | $- y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Ag III |
$\mathbf{B_{19}}$ | = | $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+2 y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Ag III |
$\mathbf{B_{20}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Ag III |
$\mathbf{B_{21}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Ag III |
$\mathbf{B_{22}}$ | = | $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- 2 y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Ag III |