Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A17B3_cI160_204_def2gh_g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/92TS
or https://aflow.org/p/A17B3_cI160_204_def2gh_g-001
or PDF Version

Ru$_{3}$Be$_{17}$ Structure: A17B3_cI160_204_def2gh_g-001

Picture of Structure; Click for Big Picture
Prototype Be$_{17}$Ru$_{3}$
AFLOW prototype label A17B3_cI160_204_def2gh_g-001
ICSD 58735
Pearson symbol cI160
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=A17B3_cI160_204_def2gh_g-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

Os$_{3}$Be$_{17}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}$ (12d) Be I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (12d) Be I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{y}}$ (12d) Be I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{y}}$ (12d) Be I
$\mathbf{B_{5}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{z}}$ (12d) Be I
$\mathbf{B_{6}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{z}}$ (12d) Be I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12e) Be II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12e) Be II
$\mathbf{B_{9}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (12e) Be II
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (12e) Be II
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (12e) Be II
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (12e) Be II
$\mathbf{B_{13}}$ = $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{14}}$ = $- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{15}}$ = $- 2 x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{16}}$ = $- 2 x_{3} \, \mathbf{a}_{1}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{17}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{18}}$ = $2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{19}}$ = $2 x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{20}}$ = $2 x_{3} \, \mathbf{a}_{1}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16f) Be III
$\mathbf{B_{21}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{22}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{23}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{24}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{25}}$ = $y_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{26}}$ = $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{27}}$ = $y_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{28}}$ = $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) Be IV
$\mathbf{B_{29}}$ = $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24g) Be IV
$\mathbf{B_{30}}$ = $z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24g) Be IV
$\mathbf{B_{31}}$ = $- z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24g) Be IV
$\mathbf{B_{32}}$ = $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24g) Be IV
$\mathbf{B_{33}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{34}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{35}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{36}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{37}}$ = $y_{5} \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{38}}$ = $- y_{5} \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{39}}$ = $y_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{40}}$ = $- y_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (24g) Be V
$\mathbf{B_{41}}$ = $z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (24g) Be V
$\mathbf{B_{42}}$ = $z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (24g) Be V
$\mathbf{B_{43}}$ = $- z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (24g) Be V
$\mathbf{B_{44}}$ = $- z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (24g) Be V
$\mathbf{B_{45}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{46}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{47}}$ = $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{48}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{49}}$ = $y_{6} \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{50}}$ = $- y_{6} \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{51}}$ = $y_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{52}}$ = $- y_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{z}}$ (24g) Ru I
$\mathbf{B_{53}}$ = $z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}$ (24g) Ru I
$\mathbf{B_{54}}$ = $z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}$ (24g) Ru I
$\mathbf{B_{55}}$ = $- z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}$ (24g) Ru I
$\mathbf{B_{56}}$ = $- z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}$ (24g) Ru I
$\mathbf{B_{57}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{58}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{59}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{60}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{61}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{62}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{63}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{64}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{65}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{66}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{67}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{68}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{69}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{70}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{71}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{72}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{73}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{74}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{75}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{76}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{77}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{78}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{79}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI
$\mathbf{B_{80}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (48h) Be VI

References

  • D. E. Sands, Q. C. Johnson, O. H. Krikorian, and K. L. Kromholtz, The Crystal Structure of Ru$_{3}$Be$_{17}$, Acta Cryst. 15, 1191–1195 (1962), doi:10.1107/S0567740871005028.

Found in

  • A. C. Larson and D. T. Cromer, The Crystal Structure of YCd$_{6}$, Acta Crystallogr. Sect. B 27, 1875–1879 (1971), doi:10.1107/S0567740871005028.

Prototype Generator

aflow --proto=A17B3_cI160_204_def2gh_g --params=$a,x_{1},x_{2},x_{3},y_{4},z_{4},y_{5},z_{5},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: