Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A16B2C_cF152_227_eg_c_b-001

This structure originally had the label A16B2C_cF152_227_eg_d_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/WZBC
or https://aflow.org/p/A16B2C_cF152_227_eg_c_b-001
or PDF Version

Predicted Li$_{2}$MgH$_{16}$ High-T$_{c}$ Superconductor (250 GPa) Structure: A16B2C_cF152_227_eg_c_b-001

Picture of Structure; Click for Big Picture
Prototype H$_{16}$Li$_{2}$Mg
AFLOW prototype label A16B2C_cF152_227_eg_c_b-001
ICSD none
Pearson symbol cF152
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A16B2C_cF152_227_eg_c_b-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

  • This structure was predicted by (Sun, 2019) as a metastable state of Li$_{2}$MgH$_{16}$ at 250 GPa and $T=0$K. If it is possible to construct this compound, or if it becomes stable due to thermodynamic considerations, it is predicted to have a superconducting transition $T_{c}$ between 430 and 473K.
  • The predicted $T=0$K ground state at 300 GPa is a $P\overline{3}m1$ #164 structure with molecular hydrogen.
  • (Sun, 2019) give the Wyckoff positions in setting 1 of space group $Fd\overline{3}m$ #227. (They list the Wyckoff positions of the magnesium and lithium atoms as (8b) and (16c), respectively. They are actually at (8a) and (16d), as in their 300 GPa data.) We used FINDSYM to shift this to our standard setting 2.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (8b) Mg I
$\mathbf{B_{2}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (8b) Mg I
$\mathbf{B_{3}}$ = $0$ = $0$ (16c) Li I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (16c) Li I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Li I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{10}}$ = $- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{14}}$ = $\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) H I
$\mathbf{B_{15}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{16}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{17}}$ = $\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{18}}$ = $- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{19}}$ = $\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{20}}$ = $- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{21}}$ = $z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{22}}$ = $z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{23}}$ = $z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{24}}$ = $z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{25}}$ = $- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{26}}$ = $\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{27}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{28}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{29}}$ = $- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{30}}$ = $\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{31}}$ = $- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{32}}$ = $\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{33}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{34}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{35}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{36}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{37}}$ = $\left(2 x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) H II
$\mathbf{B_{38}}$ = $- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96g) H II

References

  • Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure, Phys. Rev. Lett. 123, 097001 (2019), doi:10.1103/PhysRevLett.123.097001.

Prototype Generator

aflow --proto=A16B2C_cF152_227_eg_c_b --params=$a,x_{3},x_{4},z_{4}$

Species:

Running:

Output: