Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B6C_cF608_210_4h_2h_e-001

This structure originally had the label A12B6C_cF608_210_4h_2h_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/7K4Q
or https://aflow.org/p/A12B6C_cF608_210_4h_2h_e-001
or PDF Version

Te[OH]$_{6}$ Structure: A12B6C_cF608_210_4h_2h_e-001

Picture of Structure; Click for Big Picture
Prototype H$_{6}$O$_{6}$Te
AFLOW prototype label A12B6C_cF608_210_4h_2h_e-001
ICSD 16435
Pearson symbol cF608
Space group number 210
Space group symbol $F4_132$
AFLOW prototype command aflow --proto=A12B6C_cF608_210_4h_2h_e-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

  • The hydrogen sites are only half occupied. Presumably this means that there is only one hydrogen atom bound to each oxygen.
  • (Kirkpatrick, 1926) originally concluded that Te[OH]$_{6}$ was in space group $Fd\overline{3}c$ #228, but the did not find the positions of the hydrogen atoms. The current structure appears to be the correct one.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- 3 x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- 3 x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{4}}$ = $- 3 x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{5}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(3 x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{6}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{7}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(3 x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{8}}$ = $\left(3 x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Te I
$\mathbf{B_{9}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{10}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{11}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{12}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{13}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{14}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{15}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{16}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{17}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{18}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{19}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{20}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{21}}$ = $\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{22}}$ = $- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{23}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{24}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{25}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{26}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{27}}$ = $\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{28}}$ = $- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{29}}$ = $- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{30}}$ = $\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{31}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{32}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H I
$\mathbf{B_{33}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{34}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{35}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{36}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{37}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{38}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{39}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{40}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{41}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{42}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{43}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{44}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{45}}$ = $\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{46}}$ = $- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{47}}$ = $- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{48}}$ = $\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{49}}$ = $- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{50}}$ = $\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{51}}$ = $\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{52}}$ = $- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{53}}$ = $- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{54}}$ = $\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{55}}$ = $\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{56}}$ = $- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H II
$\mathbf{B_{57}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{58}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{59}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{60}}$ = $- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{61}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{62}}$ = $- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{63}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{64}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{65}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{66}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{67}}$ = $- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{68}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{69}}$ = $\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{70}}$ = $- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{71}}$ = $- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{72}}$ = $\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{73}}$ = $- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{74}}$ = $\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{75}}$ = $\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{76}}$ = $- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{77}}$ = $- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{78}}$ = $\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{79}}$ = $\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{80}}$ = $- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H III
$\mathbf{B_{81}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{82}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{83}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{84}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{85}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{86}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{87}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{88}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{89}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{90}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{91}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{92}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{93}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{94}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{95}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{96}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{97}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{98}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{99}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{100}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{101}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{102}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{103}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{104}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) H IV
$\mathbf{B_{105}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{106}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{107}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{108}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{109}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{110}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{111}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{112}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{113}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{114}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{115}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{116}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{117}}$ = $\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{118}}$ = $- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{119}}$ = $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{120}}$ = $\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{121}}$ = $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{122}}$ = $\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{123}}$ = $\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{124}}$ = $- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{125}}$ = $- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{126}}$ = $\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{127}}$ = $\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{128}}$ = $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O I
$\mathbf{B_{129}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{130}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{131}}$ = $\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{132}}$ = $- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{133}}$ = $\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{134}}$ = $- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{135}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{136}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{137}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{138}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{139}}$ = $- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{140}}$ = $\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{141}}$ = $\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{142}}$ = $- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{143}}$ = $- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{144}}$ = $\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{145}}$ = $- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{146}}$ = $\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{147}}$ = $\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{148}}$ = $- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{149}}$ = $- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{150}}$ = $\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{151}}$ = $\left(x_{7} + y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II
$\mathbf{B_{152}}$ = $- \left(x_{7} + y_{7} - z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96h) O II

References

  • D. F. Mullica, J. D. Korp, W. O. Milligan, G. W. Beall, and I. Bernal, Neutron structural refinement of cubic orthotelluric acid, Acta Crystallogr. Sect. B 36, 2565–2570 (1980), doi:10.1107/S0567740880009454.
  • L. M. Kirkpatrick and L. Pauling, Über die Kristallstruktur der kubischen Tellursäure, Z. Krystallogr. 63, 502–506 (1926), doi:10.1524/zkri.1926.63.1.502.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A12B6C_cF608_210_4h_2h_e --params=$a,x_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: