Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B2C_cF60_196_h_ac_b-001

This structure originally had the label A12B2C_cF60_196_h_bc_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/DJ7F
or https://aflow.org/p/A12B2C_cF60_196_h_ac_b-001
or PDF Version

Cu$_{2}$Fe[CN]$_{6}$ Structure: A12B2C_cF60_196_h_ac_b-001

Picture of Structure; Click for Big Picture
Prototype C$_{6}$Cu$_{2}$FeN$_{6}$
AFLOW prototype label A12B2C_cF60_196_h_ac_b-001
ICSD none
Pearson symbol cF60
Space group number 196
Space group symbol $F23$
AFLOW prototype command aflow --proto=A12B2C_cF60_196_h_ac_b-001
--params=$a, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

  • The sites we have labeled as carbon are actually a 50-50 mixture of carbon and nitrogen.
  • This structure is taken from (Villars, 2013), repeated in (Villars, 2023). Our print versions of (Rigamonti, 1937) gives a structure consistent with the K$_{2}$PtCl$_{6}$ ($J1_{1}$) prototype.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Fe I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) Cu II
$\mathbf{B_{4}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{5}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{6}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{7}}$ = $- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{8}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{9}}$ = $- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{10}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{11}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{12}}$ = $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{13}}$ = $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{14}}$ = $- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{15}}$ = $\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48h) C I

References

  • R. Rigamonti, Structure of Cupriferrocyanides I. Copper Ferrocyanide and Potassium Copper Ferrocyanide, Gazz. Chim. Ital. 67, 137–146 (1937).

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.
  • P. Villars, PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) (2023). Cu2Fe(CN)6 (Cu2Fe[CN]6) Crystal Structure, sd_1902947.

Prototype Generator

aflow --proto=A12B2C_cF60_196_h_ac_b --params=$a,x_{4},y_{4},z_{4}$

Species:

Running:

Output: