Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B14C35D4_cF260_196_abeg_2ef_cef2h_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/JELG
or https://aflow.org/p/A12B14C35D4_cF260_196_abeg_2ef_cef2h_e-001
or PDF Version

Ca$_{14}$Zn$_{6}$Al$_{10}$O$_{35}$ Structure: A12B14C35D4_cF260_196_abeg_2ef_cef2h_e-001

Picture of Structure; Click for Big Picture
Prototype Al$_{10}$Ca$_{14}$O$_{35}$Zn$_{6}$
AFLOW prototype label A12B14C35D4_cF260_196_abeg_2ef_cef2h_e-001
ICSD 50292
Pearson symbol cF260
Space group number 196
Space group symbol $F23$
AFLOW prototype command aflow --proto=A12B14C35D4_cF260_196_abeg_2ef_cef2h_e-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}$

  • All of the sites labeled aluminum are actual 5 parts aluminum and 1 part zinc, giving the observed stoichiometry.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Al II
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Al III
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Al III
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Al III
$\mathbf{B_{7}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Al III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Ca I
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Ca I
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Ca I
$\mathbf{B_{11}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Ca I
$\mathbf{B_{12}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Ca II
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Ca II
$\mathbf{B_{14}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Ca II
$\mathbf{B_{15}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Ca II
$\mathbf{B_{16}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- 3 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{18}}$ = $x_{7} \, \mathbf{a}_{1}- 3 x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{19}}$ = $- 3 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{20}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{21}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- 3 x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{22}}$ = $x_{8} \, \mathbf{a}_{1}- 3 x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{23}}$ = $- 3 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{24}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}$ (24f) Ca III
$\mathbf{B_{25}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}$ (24f) Ca III
$\mathbf{B_{26}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{y}}$ (24f) Ca III
$\mathbf{B_{27}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{y}}$ (24f) Ca III
$\mathbf{B_{28}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{z}}$ (24f) Ca III
$\mathbf{B_{29}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{z}}$ (24f) Ca III
$\mathbf{B_{30}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}$ (24f) O III
$\mathbf{B_{31}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}$ (24f) O III
$\mathbf{B_{32}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{y}}$ (24f) O III
$\mathbf{B_{33}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{y}}$ (24f) O III
$\mathbf{B_{34}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{z}}$ (24f) O III
$\mathbf{B_{35}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{z}}$ (24f) O III
$\mathbf{B_{36}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Al IV
$\mathbf{B_{37}}$ = $x_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Al IV
$\mathbf{B_{38}}$ = $x_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Al IV
$\mathbf{B_{39}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Al IV
$\mathbf{B_{40}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24g) Al IV
$\mathbf{B_{41}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Al IV
$\mathbf{B_{42}}$ = $\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{43}}$ = $\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{44}}$ = $\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{45}}$ = $- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{46}}$ = $\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+a y_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{47}}$ = $- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- a y_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{48}}$ = $\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+a y_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{49}}$ = $\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- a y_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{50}}$ = $\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{51}}$ = $\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{52}}$ = $- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{53}}$ = $\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{54}}$ = $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{55}}$ = $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{56}}$ = $\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{57}}$ = $- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{58}}$ = $\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{59}}$ = $- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{60}}$ = $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{61}}$ = $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{62}}$ = $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{63}}$ = $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{64}}$ = $- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{65}}$ = $\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) O V

References

  • V. D. Barbanyagre, T. I. Timoshenko, A. M. Il'inets, and V. M. Shamshurov, Calcium aluminozincates of Ca$_{x}$Al$_{y}$Zn$_{k}$O$_{n}$ composition, Powder Diff. 12, 22–26 (1997), doi:10.1017/S0885715600009398.

Found in

  • ICSD, Inorganic Crystal Structure Database. ID 50292.

Prototype Generator

aflow --proto=A12B14C35D4_cF260_196_abeg_2ef_cef2h_e --params=$a,x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10},x_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13}$

Species:

Running:

Output: