Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tI12_141_e_a.ThSi2

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

$\alpha$–ThSi2 ($C_{c}$) Structure: A2B_tI12_141_e_a

Picture of Structure; Click for Big Picture
Prototype : ThSi2
AFLOW prototype label : A2B_tI12_141_e_a
Strukturbericht designation : $C_{c}$
Pearson symbol : tI12
Space group number : 141
Space group symbol : $I4_{1}/amd$
AFLOW prototype command : aflow --proto=A2B_tI12_141_e_a
--params=
$a$,$c/a$,$z_{2}$


Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Th} \\ \mathbf{B}_{2} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Th} \\ \mathbf{B}_{3} & = & \left(\frac{1}{4} +z_{2}\right) \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Si} \\ \mathbf{B}_{4} & = & z_{2} \, \mathbf{a}_{1} + \left(\frac{1}{4} +z_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \left(- \frac{1}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Si} \\ \mathbf{B}_{5} & = & \left(\frac{3}{4} - z_{2}\right) \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Si} \\ \mathbf{B}_{6} & = & -z_{2} \, \mathbf{a}_{1} + \left(\frac{3}{4} - z_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{2}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Si} \\ \end{array} \]

References

  • G. Brauer and A. Mitius, Die Kristallstruktur des Thoriumsilicids ThSi2, Z. Anorg. Allg. Chem. 249, 325–339 (1942), doi:10.1002/zaac.19422490401.

Found in

  • W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley Interscience, New York, London, Sydney, Tornoto, 1972).

Geometry files


Prototype Generator

aflow --proto=A2B_tI12_141_e_a --params=

Species:

Running:

Output: